Matrix notation

Bold face lower case, as in \mathbf{a} , represents a vector; most of the time this represents a column vector.

Bold face upper case, as in A, represents a matrix.

T - usually means transpose, as in \mathbf{w}^{T} .

Probability

P(X = x) - probability that random variable X takes on a value x; a single value between 0 and 1.

p(x) - probability distribution, a function that assigns probabilities to all possible values x can take; sums up to 1.

p(x|y) - probability distribution of attribute x given the value of y is known

Input

x - single attribute input.

 ${\bf x}$ - an $M\times 1$ input vector consisting of M attributes.

 x_j - j^{th} component of the input vector; j^{th} attribute of the input.

 \mathbf{x}_i - i^{th} input vector from the training set.

 x_{ii} - j^{th} component of the i^{th} input vector.

 \boldsymbol{y} - single value output of a computational model; output of the model in response to input $\boldsymbol{x}.$

Output

 ${\bf y}$ - an $K\times 1$ output vector consisting of K values; output of the model in response to vector input ${\bf x}.$

 y_i - j^{th} component of the output vector; j^{th} value of the output.

 \mathbf{y}_i - i^{th} output vector; output of the model in response to input vector \mathbf{x}_i .

 y_{ji} - j^{th} value of the i^{th} output vector.

Desired output

 \tilde{y} - single value desired output; the value that we want the computational model to output.

 $\tilde{\mathbf{y}}$ - an $K \times 1$ desired output vector consisting of K values; desired output of the model in response to vector input \mathbf{x} .

 \tilde{y}_i - j^{th} component of the desired output vector; j^{th} value of the desired output.

 $\tilde{\mathbf{y}}_i - i^{\text{th}}$ desired output vector; desired output of the model in response to input vector \mathbf{x}_i .

 \tilde{y}_{ji} - j^{th} value of the i^{th} desired output vector.

Computational model

 \mathbf{w} - set of parameters of a computational model; it is a set of all the parameters that model needs; occasionally, in the context of neural networks, it might represent the weight vector of the single output neuron (should be obvious from the context).

 w_j - j^{th} parameter of a computational model; occasionally, in the context of neural networks, it might represent the weight on the j^{th} input of a single neuron (should be obvious from the context).

 $f(\mathbf{x}, \mathbf{w})$ - hypothesis function that takes input vector of M attributes and is parametrised by the set of U parameters \mathbf{w} ; produces output vector \mathbf{y} of K values.

 ${\cal M}$ - number of input attributes, dimensionality of the input vector.

K - number of output values, dimensionality of the output vector.

 \boldsymbol{U} - number of parameters in the model.

 ${\cal N}$ - number of training samples; number of input with the desired output pairs.

 T_t - temperature of the simulated annealing algorithm at time t.

Optimisation

 $\Delta \mathbf{w}$ - change in model parameters; occasionally, in the context of neural networks, it might represent the change of weight vector of the single output neuron (should be obvious from the context).

 Δw_j - change of the j^{th} parameter; occasionally, in the context of neural networks, it might represent the change of the weight on the j^{th} input of a single neuron (should be obvious from the context).

 α - learning rate parameter that controls the magnitude of the change in parameters; typically some value between 0 and 1.

J - the cost/performance of the model for given choice of parameters and evaluated on the training set.

e - depending on the context, might represent number e = 2.718... where something raises that number to some power, or an error that is the different between actual output of a model and desired output (should be obvious from the context).

exp - number e = 2.718... for exponential function - used whenever e in the context is supposed to correspond to error.

 e_i - error in the i^{th} output of the model.

 $\frac{\partial J}{\partial w_j}$ - partial derivative of the cost with respect to j^{th} parameter of the model; it's essentially a formula for how w_j affects the cost J, which can be used to figure out what the update Δw_j should be in order to change the output to reduce the cost; this is a partial derivative, because it treats w_j as a variable, and all w_k where $k \neq j$ as constants.

Neural networks

 ${\cal L}$ - number of layers in the networks

- l indexes layer in the network
- U_l number of neurons in layer l.

 \mathbf{W}_l - $U_{l-1} \times U_l$ matrix of all the weights in layer *l*;number of rows correspond to number of inputs to the layer, number of columns correspond to number of neurons in the layer.

 \mathbf{b}_l - $U_l \times 1$ vector of all biases in layer l.

 \mathbf{v}_l - $U_l \times 1$ vector of activities of all neurons in layer l.

 \mathbf{y}_l - $U_l \times 1$ vector of outputs from all neurons in layer l.

 $w_{ij}^{[l]}$ - weight on the connection between neuron *i* from layer l-1 and neuron *j* from layer l.

 $b_i^{[l]}$ - bias input to neuron j in layer l.

 $v_i^{[l]}$ - activity of neuron j in layer l.

 $y_i^{[l]}$ - output of neuron j in layer l.

 $\Delta w_{ij}^{[l]}$ - change in weight on the connection between neuron *i* from layer l-1 and neuron *j* from layer *l*.

 $\Delta b_i^{[l]}$ - change in bias of neuron j in layer l.

 $\delta J_j^{[l]}$ - blame on neuron j in layer l for network producing wrong output with respect to some cost J.

 $\frac{dy_j^{[l]}}{dv_j^{[l]}}$ - derivative of the output of j^{th} neuron in layer l with respect to its activity; it's a derivative of the activation function used on that neuron.