Implementing A*in Prolog

Richard A. O’Keefe
1 October 1997

1 Introduction

The A*algorithm is a search strategy for searching directed acyclic graphs. It is
an instance of the general “informed best-first” approach. An important point
about it is that the cost of a solution path is the sum of the costs of the edges
in that path.

We are given the following information:

o A start node called Start.

e A heuristic function called H which estimates the cost of the cheapest path
from a given node to a goal node.

o A predicate Goal which recognises goal nodes.

e A node expansion function Expander which is given a node and returns all
the weighted edges emanating from that node; more precisely, it returns
a set of (child,cost) pairs.

It matters that A*is searching a DAG, not a tree. That means that we need
a way of telling whether we have seen a node before. To be fully general, we
should have an equality predicate that recognises whether two terms represent
the same node or not, but to keep our code simple we shall assume that the
caller uses a representation where there is a one-to-one mapping from problems
states to Prolog terms.

The algorithm maintains two sets and two functions:

e The Open set contains nodes we have met and are yet to explore (or
perhaps re-explore).

e The Closed set contains all the nodes we have met so far and explored.
e The Parent function maps a node to its best parent so far.

e The Cost function maps a node to its best cost so far.

The following pseudo-code for the algorithm is adapted from the book “Search
in AT”, edited by Kanal and Kumar. Specifically, it is adapted from the chapter
“The Optimality of A*”, by Dechter and Pearl. because

Open := {Start}
Closed := {}
while Open is not empty loop
find a Node in Open minimising Cost(Node)+H(Node)
(if there are several such nodes, prefer a goal node)
Open := Open \ {Node}
Closed := Closed U {Node}
if Goal(Node) then
Path := [Node]
while Parent(Node) is defined loop
Node := Parent(Node)
Path := [Node|Path)]
end loop
return Path
end if
for each (Child,StepCost) in Expander(Node) loop
if Child in Open+Closed then
if Cost(Node) + StepCost < Cost(Child) then
Cost(Child) := Cost(Node) 4+ StepCost
Parent(Child) := Node
if Child in Closed then
Open := Open U {Child}
Closed := Closed \ {Child}
end if
end if
else
Parent(Child) := Node
Cost(Child) := Cost(Node) + StepCost
Open := Open U {Child}
end if
end loop
end loop
return failure

2 First data structure choices

In order to turn something like this into Prolog, we need to make some repre-
sentation decisions. There is nothing special about Prolog here; the kinds of
decisions we make apply in any programming language. The first thing to note
is the key step, where we pick the best candidate from the Open set. Now there

are data structures for picking the best candidate. They are called priority
queues and are described in all good data structures textbooks. Essentially, a
priority queue is a data structure supporting the following operations:

e create an empty priority queue
e insert a (cost,item) pair
e test whether a priority queue is empty

e remove a (cost,item) pair with minimal cost

In this problem the cost is actually the pair (C, G) where C is Cost(Node)+H(Node)

and G is 0 for a goal node, 1 for a non-goal. This is how we break ties in favour
of goal nodes.

So we’ll actually want the Open set to be a priority queue with ((C, G),Node)
elements. But a priority queue is optimised for extracting the best element; it
is not at all good at testing whether something is already an element. So we are
actually going to represent Open and Closed redundantly, using three variables:

e Candidates is a priority queue, representing Open
e Closed is a set, representing itself
e AllNodes is a set, representing the union of Open and Closed.

We do have a problem here. When the Cost of a node changes, the cor-
responding element of the priority of the node should also change if it is in
Candidates. This is actually rather nasty, because we require a new operation:

e reduce the priority of an existing element

which requires us to find the elment, and priority queues in general are not good

at that. Typical priority queue implementations in imperative languages handle

this by returning a pointer when they add an element to a priority queue, and

asking you to give the pointer back when you want to change the priority.
Let’s recast the algorithm in terms of these variables.

Priority := (H(Start), !Goal(Start))
Candidates := {Start — Priority}
Closed := {}
AllNodes := {Start}
while Candidates is not empty loop
remove the best ((C,G),Node) element from Candidates
Closed := Closed U {Node}
if G = 0 then
Path := [Node]
while Parent(Node) is defined loop

Node := Parent(Node)
Path := [Node|Path)]
end loop
return Path
end if
for each (Child,StepCost) in Expander(Node) loop
if Child in AllNodes then
if Cost(Node) + StepCost < Cost(Child) then
Cost(Child) := Cost(Node) + StepCost
Parent(Child) := Node
Priority := (Cost(Child) + H(Child), !Goal(Child))
if Child in Closed then
Candidates := Candidates U {Child — Priority}
Closed := Closed \ {Child}
else
change Child in Candidates to Priority
end if
end if
else
Parent(Child) := Node
Cost(Child) := Cost(Node) 4+ StepCost
Priority := (Cost(Child) + H(Child), !Goal(Child))
Candidates := Candidates + (Priority,Child)
end if
end loop
end loop
return failure

3 The Prolog implementation

I am going to present this package in top down fashion, although I actually
wrote most of it bottom up. Our inspection of the algorithm has told us what
operations we want to perform on the major variables.

For Closed, we need

e create empty set

e insert element known not to be there already
e try to delete element

For AllNodes, we need

e create empty set

e insert element X, where Goal(X) and H(X) are known

e check possible element X, where it is useful to know Goal(X) and H(X)
afterwards.

For Candidates, we need

e create empty priority queue

e add an entry for an item not already in the queue
e remove an entry with minimal priority

e change the priority of an item already in the queue

Top down practice would have us postpone the implementation of those
operations until we have written the code that uses them. Here I only describe
the interfaces:

The interface for sets is modelled on the corresponding operations in the
Edinburgh/Quintus library(ordsets) package.

(interface for sets 5a) =
(types for sets 11a)

:— pred bstset_empty(7Set : bstset(K)).

:— pred bstset_add_element(+Set0: bstset(K), +Elt: K,
-Set : bstset(K)).

:— pred bstset_selectchk(+Elt : K, +Set0O: bstset(K),
-Set : bstset(K)).

<&

Macro defined by scraps 5a, 13.
Macro referenced in scrap 6b.

The interface for finite maps is modelled on the corresponding operations in the
Edinburgh/Quintus library(assoc) package.

(interface for finite maps 5b) =
(types for finite maps 14a)

:- pred bstmap_empty(?Map : bstmap(X,V)).

:— pred bstmap_put(+MapO: bstmap(K, V), +Key: K, +Val: V,
-Map : bstmap(K, V)).

:- pred bstmap_get(+Map : bstmap(K, V), +Key: K, ?Val: V).

&

Macro defined by scraps 5b, 15b.
Macro referenced in scrap 6b.

The interface for priority queues is modelled on the corresponding operations
in the Edinburgh/Quintus library(heaps) package, although that package has
never supported changing the priority of an existing entry.

(interface for priority queues 6a) =
(types for priority queues 17a)

:- pred dlpg_empty(?PQ : dlpq(I,P)).

pred dlpq_add_entry(+PQO: dlpq(I,P), +Item: I, +Priority: P,
-PQ : dlpq(I,P)).

:- pred dlpq_remove_min(+PQ0: dlpq(I,P), 7Item: I, 7Priority: P,
-PQ : dlpq(I,P)).

pred dlpq_alter_prio(+PQO0: dlpq(I,P), +Item: I, +Priority: P,
-PQ : dlpq(I,P)).

<&

Macro referenced in scrap 6b.

Our Prolog file is going to follow the usual format. There will be an informative
header, listing all the exported predicates of the module. There will be type
declarations for all the types and predicates used. The module interface and
types will actually be commented out, because NU Prolog does not support
Quintus module declarations, nor does it exactly support DEC-10 Prolog type
declarations. Then we’ll have our A*code, and finally we’d have the support
code. The support predicates would normally be in other modules.

"astar.pl" 6b =

% Package: astar

% Author : Richard A. 0’Keefe
% Updated: %G%

% Defines: astar/5

/*

:— module(astar, [astar/5]).

:— pred astar(+Start: T, +Goal: void(T), +H: void(T,number),
+Expander: void(T,list(pair(T,number)))).

(interface for sets 5a, ...)
(interface for finite maps 5b, ...)
(interface for priority queues 6a)
private declarations of astar 10)
*/

(implementation of astar 7b, ...)
(implementation of sets 11b)
(implementation of finite maps 14b)
(implementation of priority queues 17b)
&

4 Closures

One extremely important thing we need to design is the interface of the predi-

cate. I have been asked to make it look like the Lisp version in /public/320/search/graph.cl.
The Lisp version accepts functions (more properly, closures) as arguments. Lisp

is a functional language, and it is very good with closures. Prolog is a relational

language, and is a bit clumsier. Some Prolog systems follow the lead of the DEC-

10 Prolog type checker (and the DEC-10 Prolog library) in providing built-in

or library predicates

call(p(Xl, . ,)(m)7)/17 ey Yn) -
p(Xl, ey Xm, Yl, ey Yn)

If you have to deal with a Prolog system that does not support these op-
erations, you can implement call/2 and call/3, which we need, using this less
efficient but more portable code.

(unused code 7a) =

call(Closure, X1) :-
Closure =.. [Pred|ArgsO],
append (Args0O, [X1], Args),
Goal =.. [Pred|Args],
call(Goal).

call(Closure, X1, X2) :-
Closure =.. [Pred|ArgsO],
append (Args0O, [X1,X2], Args),
Goal =.. [Pred|Args],
call(Goal).

<

Macro never referenced.

5 The A*predicate

Recall our declaration of astar/5:

:- pred astar(+Start: T, +Goal: void(T), +H: void(T,number),
+Expander: void(T,list(pair(T,number)))).

The code actually follows its imperative model very closely. Whenever there
was a loop, we have a tail recursive predicate, which has to carry around the
state variables that it updates and the non-local parameters that it uses. The
derivation of this code from the pseudo-code was pretty mechanical.

(implementation of astar 7b) =

astar(Start, Goal, H, Expander, Path) :-
call(H, Start, HVal),
(call(Goal, Start) -> IsGoal = 0 ; IsGoal =1),
dlpq_empty(CandidatesO0),
dlpq_add_entry(CandidatesO, Start, (HVal,IsGoal), Candidatesl),
bstset_empty(Closed0),
bstmap_empty (A11NodesO) ,
bstmap_put (A11NodesO, Start, (HVal,IsGoal), AllNodesl),
bstmap_empty (Current0) ,
astar_loop(Candidatesl, Closed0, AllNodesl, CurrentO,

Goal, H, Expander, Path).

astar_loop(
/*statex/ CandidatesO, Closed0, AllNodesO, CurrentO,
/*functions*/ Goal, H, Expander,
/*result*/ Path

) -
dlpq_remove_min(CandidatesO, Node, (Estimate,IsGoal), Candidatesl),
(IsGoal =:= 0 ->
astar_result(CurrentO, Node, [], Path)
;/* IsGoal =:= 1 (is not a goal) */
call(Expander, ChildrenWithCosts),
astar_update(ChildrenWithCosts, Node, Estimate,
Candidatesl, ClosedO, AllNodesO, CurrentO,
Goal, H, Expander, Path)
).
<o

Macro defined by scraps 7b, 8, 9.
Macro referenced in scrap 6b.

This is clumsy because we are passing around a lot of variables. They are the
state variables Candidates, Closed, AllNodes, and Current, the functions Goal,
H, and Expander, and the result Path.

The Current function is undefined for the Start node, which is how we know
when we’ve traced the Path back to the beginning.

(implementation of astar 8) =

astar_result(Current, Node, PathO, Path) :-
Pathl = [Node|PathO],
(bstmap_get (Current, Node, (_,Parent)) ->
astar_result(Current, Parent, Pathl, Path)
;/* Node must be Start because it has no Parent */
Path = PathO

<&
Macro defined by scraps 7b, 8, 9.

Macro referenced in scrap 6b.

We use recursion to iterate over the elements of the list of edges. There are a
number of if-then-elses here, and we have to be careful that all state variables
are updated, even when they do not change.

(implementation of astar 9) =

astar_update([], _, _,
Candidates, Closed, AllNodes, Current,
Goal, H, Expander, Path
) -
astar_loop(Candidates, Closed, AllNodes, Current,
Goal, H, Expander, Path).

astar_update([(Child,StepCost) |ChildrenWithCosts], Node, NodeCost,
Candidates0O, Closed0O, AllNodesO, CurrentO,
Goal, H, Expander, Path
) -
NCost is NodeCost + StepCost,
(bstmap_get (A1l1NodesO, Child, (HVal,IsGoal)) ->
bstmap_get (Current0, Child, (OCost,_)),
(NCost < 0Cost —>
NewEstimate is NCost + HVal,
bstmap_put (CurrentO, Child, (NCost,Node), Currentl),
(bstset_selectchk(Closed0, Child, Closedl) ->
dlpg_add_entry(CandidatesO, Child, (NewEstimate,IsGoal),
Candidatesi)
; Closedl = ClosedO,
dlpg_alter_prio(CandidatesO, Child, (NewEstimate,IsGoal),
Candidates1)
)
;/* NCost >= 0Cost */
Currentl = CurrentO,
Closedl = ClosedO,
Candidatesl = CandidatesO
),
AllNodesl = AllNodesO
;/* this is a completely new node */
call(H, Child, HVal),
(call(Goal, Child) -> IsGoal = 0 ; IsGoal =1),
NewEstimate is NCost + HVal,
bstmap_put (CurrentO, Child, (NCost,Node), Currentl),
bstmap_put (A11NodesO, Child, (HVal,IsGoal), AllNodesl),
dlpq_add_entry(CandidatesO, Child, (NewEstimate,IsGoal),
Candidatesl),
Closedl = ClosedO

astar_update(ChildrenWithCosts, Node, NodeCost,
Candidatesl, Closedl, AllNodesl, Currentl,
Goal, H, Expander, Path).
&

Macro defined by scraps 7b, 8, 9.
Macro referenced in scrap 6b.

For internal type checking, we need
(private declarations of astar 10) =
:- type apq(T) == dlpq(T, (number,number)).

:— type amap(T) == bstmap(T, (number,number)).
:— type fmap(T) == bstmap(T, (number,T)).

pred
astar_loop(apq(T), bstset(T), amap(T), fmap(T),
void(T), void(T,number), void(T,list((T,number)))),
list(T)),
astar_update(list((T,number)), T, number,
apq(T), bstset(T), amap(T), fmap(T),
void(T), void(T,number), void(T,list((T,number)))),
astar_result(fmap(T), T, list(T), 1list(T)).
<&

Macro referenced in scrap 6b.

6 Implementing sets

We have decided to implement the Closed set as a (simple) binary search tree.
This is a tradeoff between speed and simplicity. The simplest method would be
to use an unordered list, but that is very slow. The best method might be to
use some kind of balanced search tree, or perhaps a splay tree. Binary search
trees are a good compromise.

The obvious way to represent a binary search tree using Prolog terms is

:— type bst(K) --> empty | nonempty(XK,bst(K),bst(XK)).

where an empty term represents an empty set and a nonempty(X,L,R) term
represets the the set L' U{K} U R’ where L represents L’ and R represents R’.
The only problem with that representation is its space cost. The rule I use
for estimating the space cost of Prolog data structures is 2 words per list element
and n+ 1 words per term with functor f/n. To represent a set with N elements,
a list would take 2N words, but this representation takes 4N words. A good
rule of thumb for estimating the speed of Prolog code is to count the number of
words touched. Now in a typical binary search tree, about half of the nodes are
leaves. We can save space by not explicitly spelling out that the children of a
leaf are empty. If we do that, the average cost will be something like 3NV words.
So the representation we are going to use is

10

(types for sets 11a) =

:— type bstset(K) -->
empty % represents the empty set
| leaf(K) % represents {K}
| fork(K,L,R). % represents L’ U {K} U R’
<

Macro referenced in scrap 5a.

Recall that the operations we want are

(implementation of sets 11b) =

(make an empty set 11c)

(add a new element to a set 11d)

(try to remove an element from a set 12a, ...)
<&

Macro referenced in scrap 6b.

Making an empty set is trivial.

(make an empty set 11c) =

bstset_empty (empty) .
&

Macro referenced in scrap 11b.

Adding an element is more interesting. We use a common Prolog pattern: check
the principal functor of the term, then compare a search item against a key and
do a three-way dispatch. We have assumed in the design of astar/5 that nodes
are represented by ground terms, so we can use Prolog term comparison safely
on them.

(add a new element to a set 11d) =

bstset_add_element (empty, Key, leaf(Key)).
bstset_add_element (leaf(K), Key, Result) :-

compare(0, Key, K),

bstset_add_element_case(0, Key, Result, K, empty, empty).
bstset_add_element (fork(K,L,R), Key, Result) :-

compare(0, Key, K),

bstset_add_element_case(0, Key, Result, K, L, R).

bstset_add_element_case(<, Key, fork(K,L1,R), K, L, R) :-
bstset_add_element (L, Key, L1).
bstset_add_element_case(>, Key, fork(X,L,R1), K, L, R) :-
bstset_add_element (R, Key, R1).
bstset_add_element_case(=, Key, fork(Key,L,R), _, L, R).
<&

11

Macro referenced in scrap 11b.

Trying to remove an element from a set is the only really tricky operation. When
we remove the key from a subtree with children, we have to rejoin its children
to make one tree. We want to do this without making the tree any deeper, so
we remove the smallest element from the right subtree and make that the root
of the new tree. If the element we are trying to remove is not present, this
predicate quietly fails without requiring any special action.

(try to remove an element from a set 12a) =

bstset_selectchk(Element, Set0O, Set) :-
bstset_selectchk_loop(SetO, Element, Set).

bstset_selectchk_loop(leaf(Key), Key, empty).
bstset_selectchk_loop(fork(K,L,R), Key, Result) :-
compare(0, Key, K),
bstset_selectchk_case(0, Key, Result, K, L, R).

bstset_selectchk_case(<, Key, fork(K,L1,R), K, L, R) :-
bstset_selectchk_loop(L, Key, L1).

bstset_selectchk_case(>, Key, fork(K,L,R1), K, L, R) :-
bstset_selectchk(R, Key, R1).

bstset_selectchk_case(=, _, Result, _, L, R) :-
(R == empty ->
Result = L
H L == empty ->
Result = R

; bstset_remove_min(R, K, R1),
Result = fork(X,L,R1)

&

Macro defined by scraps 12ab.
Macro referenced in scrap 11b.

This needs an auxiliary predicate which would be part of the exported interface
of a general set package.

(try to remove an element from a set 12b) =

bstset_remove_min(leaf (K), K, empty).
bstset_remove_min(fork(X,L,R), Min, Rest) :-
bst_remove_min_case(L, Min, Rest, K, R).

bstset_remove_min_case(empty, Min, Rest, Min, Rest).

bstset_remove_min_case(leaf (Min), Min, fork(X,empty,R), K, R).

bstset_remove_min_case(fork(K1,L1,R1), Min, fork(k,L,R), K, R) :-
bstset_remove_min_case(L1, Min, L, K1, R1).

O

12

Macro defined by scraps 12ab.
Macro referenced in scrap 11b.

All that’s left for this section is describing the types of the local predicates.
There are type checkers for Prolog: DEC-10 Prolog and Quintus Prolog have
one; NU Prolog has three. Prolog doesn’t normally use types, and there are
several rival type systems. Therefore the types are commented out.

(interface for sets 13) =

:— pred
bstset_add_element_case(order, K, bstset(K),

K, bstset(K), bstset(K)),
bstset_selectchk_loop(bstset(K), K, bstset(K)),
bstset_selectchk_case(order, K, bstset(K),

K, bstset(K), bstset(K)),
bstset_remove_min(bstset(K), K, bstset(K)),
bstset_remove_min_case(bstset(K), K, bstset(K),

K,bstset(K)).
O

Macro defined by scraps 5a, 13.
Macro referenced in scrap 6b.

In practice, you would not write these predicates yourself, but would find them
in a library. The library might have been supplied by the Prolog vendor, as
Quintus and SICS do, or it might be a local library. It is also possible to
implement balanced binary search trees in Prolog, and there again, your Prolog
library should already contain such routines. It would be quite reasonable to use
balanced binary trees for these data structures. Some kind of hash table would
be even better, but that would require a hashing function for nodes, which is
not in our interface. Term comparison is defined for all ground terms.

7 Implementing finite maps

We have decided to implement the AllNodes set as a (simple) binary search
tree with satellite data. We are also going to implement the Current function
the same way. A binary search tree with satellite data is just like an ordinary
binary search tree, except that the nonempty nodes have an Info field as well
as a Key field, and some of the predicates have an Info argument as well.

Although it complicates the code, distinguishing leaf from fork nodes is still
a worthwhile space saving. So the representation we are going to use is

13

(types for finite maps 14a) =

:— type bstmap(K,V) -->
empty % represents the empty map
| leaf(X,V) % represents {K:->V}
| fork(X,V,L,R). % represents L’ U {K:->V} U R’
<

Macro referenced in scrap 5b.

Recall that the operations we want are

(implementation of finite maps 14b) =

(make an empty map 1l4c)

<put a new or replacement maplet in 14d>
(get the value associated with a key 15a)
O

Macro referenced in scrap 6b.

Making an empty finite map is trivial.

(make an empty map l4c) =

bstmap_empty (empty) .
&

Macro referenced in scrap 14b.

Adding or replacing a maplet is just the same as adding an element to a set,
except for the Info argument.

(put a new or replacement maplet in 14d) =

bstmap_put (empty, Key, Info, leaf(Key,Info)).
bstmap_put(leaf(K,V), Key, Info, Result) :-

compare(0, Key, K),

bstmap_put_case(0, Key, Info, Result, K, V, empty, empty).
bstmap_put (fork(K,V,L,R), Key, Info, Result) :-

compare (0, Key, K),

bstmap_put_case(0, Key, Info, Result, K, V, L, R).

bstmap_put_case(<, Key, Info, fork(X,V,L1,R), K, V, L, R) :-
bstmap_put (L, Key, Info, L1).

bstmap_put_case(>, Key, Info, fork(X,V, L,R1), K, V, L, R) :-
bstmap_put_case(R, Key, Info, R1).

bstmap_put_case(=, Key, Info, fork(Key,Info,L,R), _, _, L, R).

<&

Macro referenced in scrap 14b.

14

This time we don’t have to worry about deleting. Lookup is even easier than
adding.

(get the value associated with a key 15a) =

bstmap_get (leaf (Key,Info), Key, Info).
bstmap_get (fork(X,V,L,R), Key, Info) :-
compare(0, Key, K),
bstmap_get_case(0, Key, Info, K, V, L, R).

bstmap_get_case(<, Key, Info, _, _, L, _) :-
bstmap_get (L, Key, Info).
bstmap_get_case(>, Key, Info, _, _, _, R) :-
bstmap_get (R, Key, Info).
bstmap_get_case(=, Key, Info, Key, Info, _, _).
O

Macro referenced in scrap 14b.

All that’s left for this section is describing the types of the local predicates.

(interface for finite maps 15b) =

:— pred
bstmap_put_case(order, K, V, bstmap(K,V),
K, V, bstmap(K,V), bstmap(K,V)),
bstmap_get_case(order, K, V,
K, V, bstmap(X,V), bstmap(K,V)).
<

Macro defined by scraps 5b, 15b.
Macro referenced in scrap 6b.

In practice, you would not write these predicates yourself, but would find them
in a library. The library might have been supplied by the Prolog vendor, as
Quintus and SICS do, or it might be a local library. It is also possible to
implement balanced binary search trees in Prolog, and there again, your Prolog
library should already contain such routines. It would be quite reasonable to use
balanced binary trees for these data structures. Some kind of hash table would
be even better, but that would require a hashing function for nodes, which is
not in our interface. Term comparison is defined for all ground terms.

8 Representing the functions

Whether a Node in AllNodes is a Goal or not, and what its H estimate is, are
invariant properties. We might as well keep them in AllNodes to save recom-
putation. But there are two properties that change: Parent and Cost. We
note that they both change together; we never change one without changing the

15

other. That suggests that we keep a Current function that maps a Node to a
(Parent,Cost) pair.

The finite maps described in the previous section are all we need.

Current will initially be empty, because the Start node has no parent and
cost 0. We can never find a cheaper route to the Start than that!

9 Implementing priority queues

The operations we have to implement are
e make an empty priority queue
e add an entry for a node not already in the queue

e remove an entry with minimal priority

change the priority of a node

This would be very easy without the last operation. There are many different
ways to implement priority queues: heaps, deaps, treaps, leftist trees, pagoda
trees, binomial heaps, Fibonacci heaps, and more. Some of them support an
efficient “change priority” operation, but none of them implement a “find item”
operation. That means that when you add an item to a priority queue, you
get back something which acts like a pointer, and you pass that back when you
want to change the priority, or even delete the item. That doesn’t really fit well
into Prolog. Some day I may think of a clever way of doing it.

An obvious way to implement a priority queue with change is to implement
a simple priority queue and then just do a brute force search to find the node
to change, and somehow repair the priority queue data structure invariant. I
was given very short notice for preparing this package, so I have chosen a simple
scheme that should do about O(log N) for normal insertions and deletions and
O(N) for changes.

This is the scheme. We represent a priority queue @ by a list [Lq,..., Ly,]
where

Vi<i<j<n)VexelL)(VyeLj)z<y

(the sublists form an ascending partition of @) and
V1<i<n)(3H;)3T;)L; = [H;|T;)| N(Vz € T;) H; < z

(each sublist is non-empty and its first element is its smallest). These conditions
guarantee that a non-empty priority queue is represented by a term [[H;, .. .],..]
where H; is the minimum element of the priority queue.

It turns out not to matter very much whether we think of a priority queue
of simple elements, or a priority queue of (Priority,Item) pairs. Accordingly, we
have

16

(types for priority queues 17a) =

:- type dlpq(K) == list(list(K)).
:- type dlpq(I,P) == dlpq(pair(P,I)).
&

Macro referenced in scrap 6a.

(implementation of priority queues 17b) =

(make an empty priority queue 17c)
(remove the smallest element 17d)
(insert a new element 18a)

(change an existing element 18b)

&

Macro referenced in scrap 6b.

As usual, making an empty structure is trivial.

(make an empty priority queue 17c) =

dlpg_empty([]).
<&

Macro referenced in scrap 17b.

Removing the smallest element is more interesting. Finding the first element is
trivial, by design. The trick is to repair the data structure invariants. If T} is
empty, we just pop the first sublist off. If T} is not empty, we use the ‘partition’
operation of quicksort just often enough to find the smallest element. We pick
an arbitrary element of 77 and pivot around it, getting S, X, and G, where X is
our pivot, S is the smaller elements, and G is the greater or equal elements. If S
is empty, we’ve found the new minimum. If S is not empty, we can push [X|G]|
back onto the front of the priority queue and keep looking for the minimum in

S.
(remove the smallest element 17d) =

dlpq_remove_min(QO0, I, P, Q) :-
dlpq_remove_min(QO, P-I, Q).

dlpg_remove_min([[Min|T] L], Min, Q) :-
dlpq_restore(T, L, Q).

dlpq_restore([], Q, Q).

dlpg_restore([XIT], L, Q) :-
dlpg_partition(T, X, S, G),
dlpg_restore(S, [[XIG]IL], Q).

17

dlpq_partition([1, _, [1, [1).

dlpq_partition([Y|Ys], X, S, G) :-
(Y@< X ->8 = [XIS1], dlpg_partition(Ys, X, S1, G)
;/* Y @=X */ G = [X|G1], dlpg_partition(Y¥s, X, S, G1)
).

&

Macro referenced in scrap 17b.

To insert a new element X, try each sublist in turn until you find X < H;, and
add X at the front of that sublist. If there is no such H;, either add X as the
second element of the last sublist, or if the priority queue is empty, add it as a
new sublist. The interesting point here is that inserting an item never increases
the length of the top level of a non-empty priority queue; only removing does
that.

(insert a new element 18a) =

dlpq_add_entry(QO, I, P, Q) :-
dlpq_add_entry(Q0, P-I, Q).

dlpg_add_entry([]l, X, [[XID).
dlpq_add_entry([SIL], X, Q) :-
dlpq_add_entry_loop(S, X, Q, L, S).

dlpq_add_entry_loop([HIT], X, Q, L, 8) :-

(Xe<H->Q-=[[XIs]IL]

; L==10 ->Qq-= [[HXIT]]

;L= [s1|L1], Q = [SIQ1],
dlpg_add_entry_loop(S1, X, Qi1, L1, S1)

).

<&

Macro referenced in scrap 17b.

Changing is tricky. We actually implement it in two stages: delete the old entry
completely, and insert a new entry. It is clearly possible to do better, but in the
worst case we will still have to do O(NN) work, because we have no clue where
the entry is. This is the only operation where it matters that the entries are
(Priority,Item) pairs, because we are given an Item and not its old Priority.

(change an existing element 18b) =

dlpq_alter_prio(QO, I, P, Q) :-
dlpg_delete_item(QO, I, Q1),
dlpq_add_entry(Q1, I, P, Q).

(other deletion support 19a, ...)
<

Macro referenced in scrap 17b.

18

To delete an entry, we could use the commonly available predicates

select(LO, QO, L, Q),
select(_-I, LO, L)

but for one thing: if we delete the first element of a sublist, we have to repair
the data structure invariant by finding the new minimum of that sublist. The
neat thing is that we already have a way of doing that: given a list we can
find its minimum and repair the priority queue using dlpq-_restore/3, which we
derived for removal. Repeated removals will have a tendency to break the queue
into lots of little sublists, which is bad. We could have a tree of sublists, which
would make insertion fast again, but if you have a lot of removals, you will be
spending a lot of time on the removals, so there isn’t a lot of point in worrying.

(other deletion support 19a) =

dlpq_delete_item([S1I|L1], I, Q) :-
S1 = [H1]T1],
H1 = _-P1,
(PL=P >
dlpg_restore(T1, L1, Q)
; select(_-P, T1, T2) ->
Q = [[H1IT2]IL1]
;0 Q= [s11q1],
dlpq_delete_item(L1, I, Q1)
).
o

Macro defined by scraps 19ab.
Macro referenced in scrap 18b.

It is possible that your Prolog system might be lacking the widely used select/3
predicate. In case it is, here’s the code:

(other deletion support 19b) =

select(X, [XIR], R).
select (X, [HIT], [HIR]) :-
select(X, T, R).

&

Macro defined by scraps 19ab.
Macro referenced in scrap 18b.

10 Index of predicate symbols
Unfortunately, the literate programming tool used to write this document doesn’t

really understand Prolog, so the cross reference below is based on predicate sym-
bols only instead of predicate functors.

19

astar: 6b, 7b.

astar_loop: 7b, 9, 10.
astar_result: 7b, §, 10.
astar_update: 7b, 9, 10.
bstmap_empty: 5b, 7b, 14c.
bstmap_get: 5b, 8, 9, 15a.
bstmap_get_case: 15a, 15b.
bstmap_put: 5b, 7b, 9, 14d.
bstmap_put_case: 14d, 15b.
bstset_add_element: 5a, 11d.
bstset_add_element_case: 11d, 13.
bstset_empty: ba, 7b, 1lc.
bstset_remove_min: 12a, 12b, 13.
bstset_remove_min_case: 12b, 13.
bstset_selectchk: 5a, 9, 12a.
bstset_selectchk_case: 12a, 13.
bstset_selectchk_loop: 12a, 13.
call: 7a, 7b, 9.

dlpq_add_entry: 6a, 7b, 9, 18a, 18b.

dlpq_add_entry_loop: 18a.
dlpq_alter_prio: 6a, 9, 18b.
dlpq_delete_item: 18b, 19a.
dlpq_empty: 6a, 7b, 17c.
dlpq_partition: 17d.
dlpq_restore: 17d, 19a.
select: 19a, 19b.

20

