
Department of Computer Science,
University of Otago

Technical Report OUCS-2010-04

View-Oriented Transactional Memory

Authors:

K. Leung and Z. Huang

Department of Computer Science, University of Otago, New Zealand

Status:

Under Submission

Department of Computer Science,
University of Otago, PO Box 56, Dunedin, Otago, New Zealand

http://www.cs.otago.ac.nz/research/techreports.php

View-Oriented Transactional Memory

K. Leung and Z. Huang
Department of Computer Science

University of Otago
Dunedin, New Zealand

Email:{kcleung;hzy}@cs.otago.ac.nz

Abstract—This paper proposes a View-Oriented Transac-
tional Memory (VOTM) model to seamlessly integrate differ-
ent concurrency control methods including locking mechanism
and transactional memory. The model allows programmers to
partition the shared memory into “views” which are non-
overlapping sets of shared data objects. A Restricted Admis-
sion Control (RAC) scheme is proposed to control the number
of processes accessing each view in order to reduce the number
of aborts of transactions. The RAC scheme has the merits of
both the locking mechanism and the transactional memory.
Experimental results demonstrate that VOTM outperforms
traditional transactional memory models such as TinySTM
by up to five times. Also VOTM outperforms pure lock-
based models in applications with long critical sections and
has comparable performance with lock-based models in other
cases.

Keywords-View-Oriented Transactional Memory (VOTM),
transactional memory, deadlock, concurrency control, Re-
stricted Admission Control (RAC), View-Oriented Parallel
Programming (VOPP)

I. INTRODUCTION

Parallel programming is becoming mainstream since mul-
ticore CPUs have become pervasive. There is a pressing
need for parallel programming models to facilitate both
performance and convenience. Traditional lock-based pro-
gramming models can be made efficient but have tedious
programmability and are prone to errors such as dead-
lock. New programming models based on transactional
memory are more convenient, but may suffer from low
performance [1, 2]. However, the essential difference behind
these two types of models is how concurrency control is
implemented when shared data is accessed.

Traditionally locking [3, 4] is used for concurrency
control, where multiple processes/threads 1 have to access
a shared data object in an exclusive way. Atomic access to
a shared object is achieved through a locking mechanism.
This lock-based concurrency control is generally regarded
as pessimistic approach [5] where conflicts are resolved
before they are allowed to happen. Even though locking is
an effective mechanism to resolve conflicts, it could result
in the deadlock problem if multiple objects are locked in
different orders by multiple processes. Moreover, apart from
the deadlock problem, fine-grained locks are tedious for

1In the rest of the paper, we use “process” to mean both process and
thread for simplicity since they are identical in terms of concurrency
control.

programming, while coarse-grained locks often suffer from
poor performance due to lack of concurrency.

To avoid the deadlock problem as well as to increase con-
currency, Transactional Memory (TM) [6, 7] was proposed
for shared-memory programming models. In TM, atomic
access to shared objects is achieved through transactions.
All processes can freely enter a transaction, access the
shared objects, and commit the accesses at the end of the
transaction. If there are access conflicts among processes,
one or more transactions will be aborted and rolled back.
TM will undo the effects of the rolled-back transactions
and restart them from the beginning. This transaction based
concurrency control is labelled as an optimistic approach
[8, 9] where it is assumed nothing will go wrong and if it
does go wrong deal with it later.

In terms of performance, both lock-based and TM-based
approaches have their own merits in different situations.
When access conflicts are rare, the TM-based has little roll-
back overhead and encourages high concurrency since mul-
tiple processes can access different parts of the shared data
simultaneously. In this situation, however, the lock-based
approach has little concurrency due to the sequential access
to the shared data, which results in low performance. To
increase concurrency and performance, the programmer has
to break the shared data into finer parts and use a different
lock for each part. This solution using fine-grained locks
often complicates the already-complex parallel programs
and could incur deadlocks.

On the other hand, when access conflicts are frequent,
the TM-based approach could have staggering roll-back
overheads and is not scalable due to a large number of
aborts of transactions. In such a situation, it is more effective
to use the pessimistic lock-based approach to avoid the
excessive operational overheads of transactions.

In this paper, we propose a novel View-Oriented Trans-
actional Memory (VOTM) that seamlessly integrates the
locking mechanism and transactional memory into the same
programming model. VOTM is designed based on the
generic principle of our previous View-Oriented Parallel
Programming (VOPP) model [10–12]. In VOTM, shared
data objects are partitioned into “views” by the programmer
according to the memory access pattern of a program. The
grain (size) and content of a view are decided by the pro-
grammer as part of the programming task, which is as easy
as declaring a shared data structure or allocating a block

of memory space. Each view can be dynamically created,
merged, and destroyed. The most important property for
views is that they do not intersect with each other. Before
a view is accessed (read or written), it must be acquired;
after the access of a view, it must be released. This data-
centric model [13] bundles concurrency control and data
access together and therefore relieves the programmer from
controlling concurrent data access directly with either locks
or transactions. When a shared data (i.e. a view) is to be
accessed, the programmer just simply uses acquire view
to inform the system that the corresponding view is going
to be accessed. It is up to the system to decide whether
the locking mechanism should be adopted or a transaction
should be started for the concurrent access of the shared
data.

In VOTM, we adopt a novel Restricted Admission Con-
trol (RAC) scheme that can dynamically decide if the
locking mechanism or a transaction should be used for the
access of a view and thus seamlessly integrates the merits
of both the lock-based and the TM-based approaches.

In the RAC scheme, a set of shared objects (grouped as
a view using either static declaration or dynamic memory
allocation in VOTM) is restricted to be accessed by a
limited number of processes Q (called admission quota)
whose value can be from 1 to the maximum number of
processes (NPROCS), depending on the contention between
the processes. The limited number of processes can be
statically specified in the program or dynamically adjusted
at runtime according to the contention situation, e.g., the
number of transactional aborts. When Q is 1, the pro-
cesses access the set of data objects sequentially as in
the lock-based approach. When Q equals NPROCS, the
RAC scheme behaves like the TM-based approach where
any process is allowed to start a transaction to access
the data objects. However, when Q is greater than 1 but
smaller than NPROCS, only Q processes are allowed to
access the data objects concurrently through transactions.
If there are already Q processes accessing the data ob-
jects inside uncommitted transactions, other processes are
excluded from accessing the set of data objects and have to
wait until some existing transactions commit. Additionally,
RAC can flexibly adjust Q at runtime in order to achieve
optimal performance, which will be described in details in
Section II-B.

In VOTM, views are classified into three types: Atomic
View (AV), Single Writer View (SWV), and Transactional
Memory View (TMV). AV is usually declared for primitive
variables such as int and long which atomic operations
are implemented with compare-and-swap (CAS). AV can
be regarded as a special implementation of transactional
memory for primitive variables. SWV is for complex data
structures and requires exclusive access. TMV is for more
complex data structures and allows concurrent access but
resolves access conflicts by using transactions. TMV be-
haves the same as traditional transactional memory and

transactions are rolled back if there are conflicts on the
access of the same TMV. The transaction granularity for
conflict detection for TMV is word-based.

In addition to the transactional mechanism, the RAC
scheme is implemented for TMV to dynamically control
admission. Comparing to SWV, TMV is more generic than
SWV. SWV can be regarded as a special case of TMV
whose admission quota Q is set to 1. When a TMV whose
Q is greater than 1 is acquired, a transaction is started as
in transactional memory; when the TMV is released, the
transaction is committed.

A. Contributions of this paper

First, we propose the novel View-Oriented Transactional
Memory (VOTM) that seamlessly integrates the merits of
both the lock-based and the TM-based approaches and a
novel Restricted Admission Control (RAC) scheme that
adapts flexibly to runtime contention situations in order to
achieve optimal performance.

Second, VOTM ushers in a new programming paradigm,
which enables programmers to achieve optimal performance
based on view partitioning while avoiding problems from
lock-based programming such as fine-grained locking and
deadlock. Complex data structures such as linked lists, trees,
and graphs can be simply placed into different TMVs, but
efficient access to them is achieved through RAC.

Third, we implement a VOTM model, called Cocktail.
Our experimental results show that VOTM outperforms both
purely lock-based systems and TM-based systems while
offering the ease of programmability of TM.

The rest of the paper is organized as follows: Section
II will discuss the details of the VOTM model and its
implementation; Section III will cover experimental results
and performance evaluation; Section IV will discuss related
work and Section V is about the conclusions and future
work.

II. THE VOTM PROGRAMMING MODEL AND
IMPLEMENTATION

VOTM is based on the philosophy of shared memory
partitioning. Since different shared data can have different
access patterns and contention levels, VOTM allows groups
of shared objects that are not required to be accessed atom-
ically to be put into different TMVs, so that concurrency
control on each TMV can be separately optimized using the
RAC scheme (refer to Section II-B for more details).

This optimization cannot be achieved by traditional trans-
actional memory without grouping data objects into views.
For example, in VOTM a tree structure with thousands of
nodes can be put into one TMV, and a hash table can
be put into another TMV if they are not required to be
accessed atomically in an application. Suppose the tree in
the application has high contention, but the hash table has
low contention. The RAC scheme in VOTM would quickly
restrict the access to the tree to relieve its contention,
without restricting the number of processes accessing the

hash table. In this way, the system would continue to allow
maximal concurrent access to the hash table, though the
access to the highly-contentious tree is restricted. Therefore,
by putting the tree and the hashtable in different TMVs,
their accesses are separately optimized, which cannot be
achieved by traditional transactional memory.

A. Programming interface

As mentioned before, VOTM provides three types of
views: Atomic View (AV), Single Writer View (SWV),
and Transactional Memory View (TMV). Both AV and
SWV are treated as special cases of TMV. In our current
implementation, AV is statically declared, while SWV and
TMV are dynamically created.

AV consists of a primitive variable such as int and long.
Its operations such as addition and subtraction are provided
by the system. Their atomicity is achieved through instruc-
tions such as CAS (compare-and-swap). Its implementation
is similar to the roll-back principle of transactional memory,
but is more efficient than transactions due to the hardware
support of the CAS instruction.

SWV is used for complex data structures that require
exclusive access but have a short computation involved.
For example, a shared task queue could be put into an
SWV if it tends to have high access contention. These data
structures are not suitable for optimistic concurrency control
approaches such as transactions. As we mentioned before,
SWV is a special case of TMV whose admission quota is
set to 1.

TMV is suitable for very complex data structures such
as graph and hash table. These data structures are often
sparsely accessed and involve a long computation. There-
fore, they are suitable for optimistic concurrency control
approaches. Coarse-grained locking often suffers from low
performance on these data structures, but fine-grained lock-
ing is very tedious and error-prone for programming on
them.

TMV behaves the same as transactional memory, except
it has a view identifier used by the programmer to inform
the system which group of data objects are going to be
accessed.

Figure 1 shows a C example to explain how to use VOTM
to make a linked list program.

In the example, create view() creates a TMV for the
linked list, and malloc block() allocates a memory block
from the TMV. With the creation of the TMV, we allow
all nodes in the linked list to be allocated in contiguous
memory space. This arrangement currently has no perfor-
mance advantage in VOTM, but will enable the compiler
to detect view accesses easily. We will address possible
compiler support in Section V.

A VOTM code snippet for list insertion is shown in
Figure 2.

Here the parameter node in the function points to a
node that is a memory block belonging to the TMV of
the linked list. Compared with the sequential version of the

1 typedef struct Node_rec {
2 Node *next;
3 Elem val;
4 }
5

6 typedef struct List_rec {
7 Node *head;
8 } List;
9

10 List *ll_alloc(vid_type vid) {
11 List *result;
12 create_view(vid, TMV, size);
13 result = malloc_block(vid, sizeof(result[0]));
14

15 acquire_view(vid);
16 result->head = NULL;
17 release_view(vid);
18 return result;
19 }

Figure 1. Code snippet of list allocation in VOTM

1 void ll_insert(List *list, Node *node, vid_type vid) {
2 Node *curr;
3 Node *next;
4

5 acquire_view(vid);
6

7 if (list->head->val >= node->val) {
8 /* insert node at head */
9 node->next = list->head;

10 list->head = node;
11 release_view(vid);
12 return;
13 }
14

15 /* find the right place */
16 curr=list->head;
17 while (NULL != (next = curr->next) &&
18 next->val < node->val) {
19 curr = curr->next;
20 }
21

22 /* now insert */
23 node->next = next;
24 curr->next = node;
25 release_view(vid);
26 }

Figure 2. Code snippet of list insertion in VOTM

code snippet, the only extra code is the view primitives,
acquire view() and release view(), that demarcate view
access.

Deadlock is not possible in VOTM, since all views are
prohibited from nested acquisition with acquire view(). If
two views need to be acquired in a nested way, they
should be either put into the same view initially or merged
together dynamically. Fortunately, using TMV, if TMVs are
carefully partitioned, nested view acquisitions are rarely
needed in real applications. When nested view acquisitions
are needed, they can often be resolved in VOTM by merging
the involved views into one TMV.

A summary of the VOTM API is shown in Table I.

B. Restricted Admission Control (RAC) scheme

We implement the RAC scheme for every TMV. Each
TMV consists of memory blocks that may store an entire
linked list, tree or graph. Each TMV has an admission quota

Table I
VOTM API

int create view(int vid, vid type t type, size t size) Creates a view for vid. If vid is less than 0, the view ID will be automatically allocated
and returned. type can be one of: AV, SWV, TMV

void *malloc block(int vid, size t size) Allocates a memory block with the specified size for the view vid. Returns the base
address of the allocated block.

void free block(int vid, void *ptr) Frees the memory block ptr points to that is owned by a view vid.
void free view(int vid) Frees the view vid.
void brk view(int vid, size t size) Expands the memory space of the view vid by size.
void acquire view(int vid) Acquires read-write access to the view vid.
void acquire Rview(int vid) Acquires read-only access to the view vid.
void release view(int vid) Releases access to the view vid.

Q that restricts the maximum number of processes access-
ing the view concurrently. Before a view is accessed, the
primitive acquire view is used. If Q equals 1, acquire view
is equivalent to a lock acquisition; if Q is greater than
1, acquire view will either start a new transaction or wait
according to the following RAC scheme.

Suppose a TMV has an admission quota Q. We assume
the current number of processes concurrently accessing
the view is P . When the TMV is acquired through ac-
quire view, RAC follows the steps below:

• Compare P with Q. If P is smaller than Q, start a new
transaction, increase P by 1, and return with success.

• If P equals Q, the calling process is blocked until P
becomes smaller than Q.

When the TMV is released through release view, RAC
executes the following steps:

• Try to commit the transaction. If the commit fails,
abort the transaction and roll back to restart the trans-
action.

• If the commit succeeds, decrease P by 1, and then
return with success.

Furthermore, RAC can dynamically adjust the admission
quota Q in the following way according to the contention
situation.

The admission quota Q of each TMV is initialized as the
maximum number of processes (NPROCS). RAC regularly
checks the contention situation of the TMV. The contention
situation is indicated by the number of aborts as well
as the number of successfully committed transactions that
are related to the TMV. If the number of aborts is high,
the contention is usually high. However, high number of
successful transactions often indicates that the contention
is not high enough to affect the overall progress of the
computation, even though the number of aborts may be
high in such a situation. Therefore, we use the ratio be-
tween the number of aborts and the number of successful
transactions (aborts/successful tx) to reflect the severity
of the contention situation.

If this abort/success ratio is larger than MAX (currently
set to 8.0), the view is considered as highly contentious.
When this happens, RAC will relieve the contention of the
TMV by halving the admission quota Q. Then, the number

of aborts and the number of successful transactions will
be reset in the TMV. This process can be repeated until Q
reaches 1, in which case the concurrency control is switched
to the lock-based approach. The transaction mechanism is
no longer used to access the view and the abort/success
ratio for the view concerned is no longer checked.

Conversely, if the abort/success ratio is smaller than
MIN (currently set to 1/8), the TMV is considered as
having low contention. RAC will increase concurrency by
doubling Q. When Q is changed, the numbers of aborts and
successful transactions of the TMV will be reset.

The choices of MAX and MIN are currently empirical.
Different TM algorithms may favor different values. For
example, the encounter-time locking TM algorithm used
in TinySTM aborts potentially-conflicting transactions early
to reduce wasted computation. Under the same contention
situation, this would result in higher abort/success ratio than
other TM algorithms such as commit-time locking used in
TL-2. Therefore, the same genuine high contention case
will have higher abort/success ratio for TinySTM than for
TL-2. Optimal MAX and MIN settings are dependent
on the underlying transaction memory system. Automatic
adjustment of these values is an interesting issue for further
research.

Frequent check of the abort/success ratio is costly since
a spinlock is used for multiple processes to access the
numbers, which would significantly increase the overhead
of RAC. Therefore, the check is only triggered under the
condition when the sum of aborts and successful transac-
tions is a multiple of 5000. Our observations show that,
checking under this condition is frequent enough in most
cases, because if the contention is high, the number of
aborts will rise quickly to trigger the check.

C. Implementation details

We implement the VOTM model based on the soft-
ware transactional memory system TinySTM [14], a word-
granularity timestamp-based TM system based on the C
language.

In our implementation, TinySTM is configured as a
redo-log-based TM system. Reading and writing of shared
variables are recorded in tentative read- and write-set re-
spectively.

The algorithm of TinySTM is based on the lazy snapshot
algorithm (LSA) [15], using the encounter-time locking
policy. TinySTM optimally aborts potentially-conflicting
transactions early to reduce wasted computation. In the
TinySTM algorithm, each memory location is associated
with a lock, which has a version number attached. At the
beginning of a transaction, the global version clock (GV)
is sampled and recorded as the “read version” (RV) of the
transaction. When a location is written, if the location is
locked by a different process, the transaction is aborted and
restarted. Otherwise the lock for the location is acquired
and the update is recorded into the write-set.

When a location is read, a transaction must verify that
the lock covering the location is not owned or updated by
other processes. The transaction reads the lock, then read
the memory location and the lock again. If the lock is owned
by another process, the transaction aborts. If the version of
the lock changes, the read procedure is redone.

Once the location is read, it is checked if it can be
used to construct a consistent snapshot. Like LSA, if the
version is more recent than the current validity range of
the transaction snapshot, it will be “extended” by verifying
that every address covered by the read-set is valid and not
locked. If the extension is successful, the validity range
will be extended to cover the location read; otherwise the
transaction will be aborted.

At commit operation, if no conflicts are found, the
commit is deemed successful. GV will be atomically in-
cremented by one. Variables in the write-set are written to
the actual location. The released version of all the locks in
the write-set is set to the current GV.

Each TMV in VOTM is essentially a small TinySTM
system, and access to each TMV can be controlled in-
dependently so that a TMV with high contention will
not affect concurrency of other TMVs which may have
low contention. Experimental results in the next section
demonstrate that using multiple TMVs in this way improves
performance.

Similar to TinySTM and many other software TM sys-
tems, in our current implementation, the memory accesses
in VOTM have to be explicitly labelled with primitives such
as Tx read and Tx write. However, these primitives can be
removed with compiler support or hardware TM systems
[16, 17].

TinySTM is chosen for our implementation because it
is a well-maintained, efficient modern TM system [14, 18]
with features such as encounter-time locking to reduce time
wasted on failed transactions and configurable to be a redo-
log system to allow good performance in high abort cases,
which makes TinySTM very competitive to VOTM in terms
of performance.

Since TinySTM uses encounter-time locking, the trans-
action first writing to a location commonly accessed by
other transactions wins (as opposed to TL-2, which uses
commit-time locking instead). However, no matter what
conflict detection policy is used, short transactions can

easily abort a long transaction and computation done by
the long transaction will be wasted. This situation will be
further explained in Section III-A3.

The origin of performance gain in VOTM is very dif-
ferent from traditional TM systems that uses either in-
transaction conflict resolution algorithms and/or transaction
scheduling algorithms. In-transaction conflict resolution al-
gorithms [19–21] only detect conflicts and control con-
tentions during the execution of transactions and on their
own still allow any processes to freely enter transactions.
Transaction scheduling algorithms [22–24] prevent conflicts
by serializing transactions or limiting number of concurrent
transactions. These algorithms treat the entire TM with the
same scheduling decision. However, it is not reasonable to
restrict access to a low-contention shared object due to an-
other shared object that has high contention, a situation that
could happen on these algorithms. In VOTM, transactional
memory is divided into TMVs where shared objects that
will be accessed together in a transaction are grouped into
the same TMV. In this way, restricting access to a TMV
with high contention does not affect access to a TMV with
low contention, which enables more concurrency. In VOTM,
RAC is used as the transactional scheduling algorithm
for each TMV, but any in-transaction conflict resolution
algorithms can be applied in each TMV. We will further
discuss in-transaction conflict resolution and transactional
scheduling technologies in Section IV.

In the next section, we will show that VOTM with RAC
can reduce the number of aborts, and therefore reduce con-
tention and increase throughput, by controlling admission
to TMVs.

III. PERFORMANCE EVALUATION

In this section, we compare the performance of VOTM
with the software transactional memory system TinySTM
version 1.0.0 [14]. Our benchmark applications include
Bayes, Genome, Intruder, Kmeans, Labyrinth, Vacation and
Yada from the STAMP transactional memory benchmark
suite version 0.9.10 [25] and Travelling Salesman Prob-
lem(TSP) from the SPLASH-2 benchmark suite [26]. They
represent different classes of applications. The experiments
are carried out on a Dell PowerEdge R905 server with
four AMD Opteron 8380 quad-core processors running with
800MHz and 16GB DDR2 memory. Linux kernel 2.6.32
and the compiler gcc-4.4 are used during benchmarking.

All programs are compiled with the optimization flag “-
O2”. In each case, speedup is measured against the serial
version of the benchmark algorithm. The elapsed time cal-
culated in each case includes initialization and finalization
costs. However, the running time of functions that are
irrelevant to the original application, such as generation of
random input sequences and result-verification, is excluded.

The experimental results are illustrated with speedup
curves. For each application, we give the speedup curves
using TinySTM and VOTM. In addition, the pure lock-
based (i.e. only consists of SWV and AV) version of

the application is also implemented as a reference for
performance comparison. In cases where the VOTM version
does not use TMV, the VOTM version is the same as the
pure lock-based version. In the discussion below, N refers
to the number of processes, i.e., NPROCS.

Speedup is calculated by:

speedup =
timeserial version
timeparallel version

(1)

To ensure fair comparison, the same serial version of each
benchmark application is used as a baseline for calculating
speedups of all three systems. Each run is repeated for 10
times and the geometric mean is used.

The rest of this section will demonstrate the three main
mechanisms VOTM improves performance:

• Controlling contention by using RAC;
• Providing AV and SWV for shared objects that only

need to be held for a short time;
• Partitioning shared objects that are not accessed to-

gether atomically into different views.

A. Applications where RAC is a performance enabler

RAC can improve performance of applications that have
high contention in part or the entire shared memory yet
there is a portion of computation time spent in transactions.
RAC achieves good performance by restricting admission to
each TMV, therefore reducing conflicts between processes
accessing the TMV in high contention situations. The rest
of this section will use two applications to show how RAC
performs, though it works for other applications as well.

1) Genome: Genome is a gene-sequence alignment al-
gorithm which has multiple shared hash tables with low
contention and two shared arrays with higher contention.
Shared data structures include an input hash table as well
as an array of hash tables containing intermediate fragments
plus two arrays tracking prefixes and suffixes. In this
algorithm, input gene fragments are first inserted in an
input fragment hash table in parallel. This step removes
duplicated fragments. Then buckets in the input hash table
are divided between processes, which calculate the hash
function and insert into the array of hash tables. The Rabin-
Karp string search algorithm is subsequently used to match
gene fragments in parallel. In the VOTM version, a TMV
is used to host all shared data structures. In the pure
lock-based version, the hashtable, prefix array, and suffix
array are each protected by a lock. We could protect each
bucket in each hash table with a lock, but this would be
too tedious and change the original algorithm drastically.
Default parameters “-g16384 -s64 -n16777216” are used.

At N = 16, speedup of Genome in TinySTM and VOTM
are 5.19 and 6.13 respectively (Figure 3) and number of
aborts are 64,595,381 and 572,677 respectively. The 18%
improvement of VOTM over TinySTM in Genome can be
attributed to restricting access to the shared data structures
when contention increases, thus minimizing work wasted
by aborted transactions.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 2 4 6 8 10 12 14 16

S
p

e
e

d
u

p

Num Procs

TinySTM
VOTM

Pure lock

Figure 3. Speedup of Genome

2) Bayes: Bayes has a considerable portion of execution
time in transactions that have high contention. Bayes is an
application with long transaction and high contention. In
this application, shared data structures include a Bayesian
graph-like net structure, a task list implemented as a linked
list and a few score variables. At the beginning of this
algorithm, all processes concurrently build the task list.
Then in the main parallel section, each process enters a
while loop, where it pops a task from the task list, and then
acquires access to the shared net, and calculates changes
to the Bayesian net. The access to the shared net is long
and has high contention. Then the process may update the
global scores and/or insert more tasks to the task list.

Since accesses to the net data structure and the task list
are independent, the net is allocated as a TMV and the task
list is in another TMV. Contention of the task list and the
net can be different, so allocating them in separate TMVs
can allow their access to be independently optimized.

To examine the benefit of allocating shared data into
different TMVs, an alternative implementation “VOTM
1TMV”, which places both the task list and the shared net
into the same TMV, is also tested.

Each global score is allocated as an AV and is only
accessed when the process does not hold any of the TMVs
to avoid unnecessary transaction or lock overheads.

Default parameters “-v32 -r4096 -n10 -p40 -i2 -e8 -s1”
are used in this experiment.

From Figure 4, it can be seen that the speedup of both
TinySTM and VOTM 2TMV saturates at 3.8 at N = 4.
However, when N increases further, TinySTM speedup
deteriorates because the extra processes can no longer
improves performance, but only increases contention and
conflicts. At N = 16, the speedup of the VOTM 2TMV
version stays at 3.84, whereas the speedup of TinySTM
drops to 2.19. The speedup of VOTM 1TMV version is
3.58, slightly lower than the 2TMV version, but still 63%
better than TinySTM. Therefore, RAC successfully prevents
speedup degradation by restricting the number of processes
admitted to a TMV. According to our experiment, RAC cuts
the number of aborts from 522,972 in TinySTM to 9101 in

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 2 4 6 8 10 12 14 16

S
p

e
e

d
u

p

Num Procs

TinySTM
VOTM 2TMV
VOTM 1TMV

Pure lock

Figure 4. Speedup of Bayes

Table II
OVERHEAD OF TRANSACTIONS WITH DIFFERENT SIZE

no. of r/w 0 1 10 100 1000 10000 100000
time(µs) 0.21 0.35 1.30 10.65 109.47 1216.22 14425.03

VOTM 1TMV and 4591 in VOTM 2TMV.
In addition, the performance gain of VOTM 2TMV over

VOTM 1TMV can be attributed to separating the net and
the task queue into different TMV, so that restricting access
to the one structure with high contention will not unduly
restrict access to the other structure with lower contention,
thus concurrency is maximized.

It is worth noting that, if the net and the task list are
accessed exclusively with locks as in the pure lock-based
version, speedup vanishes as shown in Figure 4, because
most of the computation in this application occur while the
data structures are locked.

3) How RAC improves performance: RAC improves
performance in two ways. The first way is through remov-
ing the transactional overhead by switching to lock-based
mechanism when the admission quota Q equals 1.

To investigate this transactional overhead, microbench-
marks of transactions with 0, 1, 10, 100, 1000, 10000
and 100000 read and write operations are performed. Each
read/write operation is performed in a separate location to
examine the real cost of read- and write-set maintenance. To
amortize measuring noises, we have collected the results by
first measuring the execution time of 100,000 sequentially-
executed identical transactions and then calculating the
average execution time of one transaction. The results are
presented in Table II.

From Table II, it can be seen that the cost of starting and
ending a transaction itself is not trivial (0.21µs per empty
transaction), and for a long transaction with 100,000 reads
and 100,000 writes, the overhead can be up to 14ms per
transaction. Therefore transactions are expensive.

To avoid the expenses in transactional memory, RAC
drops the transactional memory mechanism when the ad-
mission quota of a TMV becomes 1. Furthermore, the

Table III
RUNTIME AND NUMBER OF ABORTS OF BAYES AT DIFFERENT Q

1(no tx) 1(tx) 2 4 8 16
time(sec.) 27.51 28.34 23.53 12.42 9.4 12.54
No. of aborts 0 0 337 1143 3422 536384

VOTM system allows users to put only deadlock-prone
data structures into TMVs and the remaining shared data
structures into SWVs which admit single writer but multiple
readers.

The second way that RAC improves performance is
through reducing the number of aborts by decreasing Q.
As the application is run, the RAC algorithm adjusts Q
according to the abort/success ratio. Q will eventually settle
at the value where speedup saturates (i.e. the number of
processes where maximum concurrency is reached).

After speedup is saturated, RAC prevents speedup degra-
dation by restricting admission to the TMV to Q processes
to prevent extra processes from increasing contention and
conflicts. This is very important as in real-life situations, as
it can be difficult to determine in advance the number of
processes needed to saturate speedup if the access patterns
are dynamic and bursty.

In order to demonstrate the effect of RAC in terms
of restricted admission, we use Bayes in this part of the
experiment. Here the number of running processes (N) is
fixed to 16 and the admission quota (Q) is fixed to 1, 2,
4, 8 and 16 respectively. The Q = 16 case is equivalent
to no restriction of admissions, but the Q = 1 case still
uses transactions (tx) in order to show only the effect of
admission control. However, result of a Q = 1 case run
without transactions (no tx) is also shown to demonstrate
transactional overheads.

From Table III, it can be seen that Bayes performs the
best at Q = 8. When Q is smaller, the performance is
not good due to lack of concurrency, though the number of
aborts is small. However, when Q is larger, the performance
is getting worse due to high contention. Therefore, RAC is
very useful for adjusting Q to the optimal value. Differences
between Q = 1 cases with and without using transactional
mechanisms reflect transactional overheads.

In Figure 5, we show a scenario to explain theoretically
why RAC can improve performance with restricted ad-
mission. As mentioned earlier, in TinySTM, a late-coming
short transaction can easily abort a long transaction that
has been running for a long time if the short transaction
locks an object first. The time between the entry of the long
transaction and the short transaction will be wasted. RAC
can reduce the likelihood of this situation by restricting the
number of processes acquiring the TMV.

In Figure 5, the long transaction T1 conflicts with the
short transaction T3, although T3 starts much later than
T1, T3 locks the variable a first. T1 finds out the conflict
when it tries to write to the variable a, then it aborts and

a

blocked by RAC

until the first

transaction

commits

T3 is the third

write(a)

write(a)

write(a)

write(a)

read(a)

write(b)

T1 T3T2

time saved

T1 aborts
and restarts

read(a)

read(b)read(b)

T3T1 T2

write(a)
write(b)

read(a)

Then when T1

tries to access

it aborts.

TinySTM RAC Q = 2

when it first

T3 locks a

the locked a,

writes to

transaction,

Figure 5. RAC implementation over TinySTM - RAC blocks T3 and
prevents it from aborting T1 in high contention

restarts. However, if Q is set to two by RAC, T3 is the
third transaction to begin, so it is blocked until the first
transaction (T1) commits, which prevents it from conflicting
and aborting T1.

The above results and analysis have demonstrated the ad-
vantage of RAC that can dynamically adjust the admission
quota Q to the optimal, keeping the best balance between
concurrency and contention.

In both Bayes and Genome, TMV only allows a certain
amount of concurrency to avoid excessive conflicts. After
the speedup is saturated, RAC prevents performance degra-
dation by restricting admission to TMVs to the optimum
number of processes, whereas traditional TM systems like
TinySTM still does not control admission of processes to
transactions, and therefore causing excessive conflicts and
degraded performance.

B. Applications where performance is improved by using
SWV and AV

Lock-based mechanism like SWV is more efficient than
transactional memory when the shared object is small but
has high contention for accesses. Likewise, atomic opera-
tions on word-sized shared variables such as int and long
are better implemented with instructions like CAS than with
the heavy-weight TM mechanism.

VOTM can remove unnecessary TM overheads by pro-
viding SWV and AV to avoid transactional overhead. One
example is the priority queue in the Travelling Salesman
Problem (TSP) that is suitable for SWV. Another example
is Kmeans where local results are added to a shared array
in parallel and each element is better implemented as an
AV. As to be shown in our experimental results, Kmeans is
five times faster with AV than with transactional memory.

This flexibility shows the strength of VOTM which
allows the programmer to improve performance with SWV
and AV if appropriate. Since VOTM seamlessly integrates
different concurrency control mechanisms through view
partitioning, the programmer can flexibly use SWV, AV
and TMV to achieve optimal performance within the same
programming paradigm.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10 12 14 16

S
p

e
e

d
u

p

Num Procs

TinySTM
VOTM TMV
VOTM SWV

Pure lock

Figure 6. Speedup of TSP

1) TSP: The Travelling-Salesman Problem (TSP) al-
gorithm is a small-to-medium-size transaction but with
very high contention. Transactions in this algorithm are
memory intensive but does not have computational work,
therefore only a small portion of execution time is spent
in transactions. The algorithm uses the branch-and-bound
depth-limited search approach. The 33-city case ftv33.atsp
from TSPLIB95 [27] is used.

In this algorithm, the priority queue (storing partially-
evaluated tours) is the shared object. First, the master
process pushes the root tour into the priority. Then in
a loop, each process pops a tour. If the tour is small,
it will be evaluated serially; otherwise, sub-tours will be
created and pushed into the priority queue. Accesses to the
priority queue are short, but are memory-access intensive,
and therefore have high contention.

In the VOTM SWV version, an SWV is allocated for the
priority queue, which performs the same as the pure lock-
based version. The speedup of VOTM SWV is 12.44, which
is four times better than the TinySTM version, as shown in
Figure 6.

We have also implemented the VOTM TMV version to
show the performance of RAC. In this version, the priority
queue is allocated as a TMV with RAC. If the abort/success
ratio is above the contention threshold, the TMV dynami-
cally adjusts its admission quota Q and eventually switches
to the locking mechanism to stem the aborts. Compared
with TinySTM, VOTM TMV improves the speedup to 9.08,
which is three times better than TinySTM, as shown in
Figure 6.

In the TinySTM version, the push and pop operations on
the priority queue are done in transactions. The high number
of aborts (4,150,852,440 at N = 16 vs. 15658595 aborts in
VOTM TMV) results in the relatively low speedup of 3.04.

In TSP, the time of accessing the priority queue is short
but with intense contention, locking mechanism is superior
to transaction. The 30% performance loss of VOTM TMV
to the VOTM SWV is due to the loss of performance
before Q falls back to 1. This loss of performance can
be eliminated by simply allocating the priority queue as

 0

 2

 4

 6

 8

 10

 12

 0 2 4 6 8 10 12 14 16

S
p

e
e

d
u

p

Num Procs

TinySTM
VOTM

Pure lock

Figure 7. Speedup of Kmeans at low contention

a SWV. This shows the strength of VOTM which allows
the programmer to improve performance with SWV if
appropriate.

2) Kmeans - incrementing elements in an array: Kmeans
is a multi-iteration clustering algorithm, which in each itera-
tion, processes calculated changes independently, and at the
end of the iteration, increment each element in the shared
array with the local calculated changes. Parameters “-m40 -
n40 -t0.00001 -i inputs/random-n65536-d32-c16.txt” and “-
m15 -n15 -t0.00001 -i inputs/random-n65536-d32-c16.txt”
are used for low contention, and high contention cases
respectively. Iterations are repeated until the error falls
below the threshold.

In the TinySTM version, updating the entire array is
included in a single transaction to avoid the cost for
starting/ending a transaction on each element. However in
this algorithm, only the increment of each element needs
to be atomic, and the arrangement in the TinySTM version
causes the read-set and write-set to be unnecessarily large,
and therefore increasing the transactional overheads.

VOTM solves this problem by allocating each element
in the shared array as an AV, and no TMVs are used.
As a result, in both low contention and high contention
cases, VOTM has superior performance over TinySTM. The
global error value is also allocated as an AV. For N = 16,
at low contention, VOTM is 50% faster than TinySTM
(Figure 7); and at high contention, VOTM is five times
faster than TinySTM (Figure 8). In TinySTM, the number
of aborts for low and high contention cases are 15,550,412
and 124,546,022 respectively, while VOTM has no aborts
due to the use of AV.

The pure lock-based version has the same performance
as VOTM since it uses atomic variables which are similar
to AV.

C. Applications where performance is improved by parti-
tioning of shared memory into multiple views

Placing shared objects which are not accessed together
atomically in different views improves performance, be-
cause admission of each TMV is now controlled indepen-
dently by RAC. Therefore restricting access to a view with

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 2 4 6 8 10 12 14 16

S
p

e
e

d
u

p

Num Procs

TinySTM
VOTM

Pure lock

Figure 8. Speedup of Kmeans at high contention

high contention does not affect concurrency of accesses to
other views with low contention. Bayes and Intruder fit in
this class of applications, and Bayes is already discussed in
Section III-A2.

1) Intruder: Intruder (from the STAMP benchmark) has
short transactions with high contention. In this application,
a dictionary (implemented as a self-balancing tree with
each node representing a session which consists of a list
of packets) is used to store partially-assembled sessions.

The algorithm first puts network packets into a task
queue, then at the parallel section, each process inserts a
de-queued packet into the correct session in the dictionary
and check whether the session of the packet is completely
reassembled. If the session is now completely reassembled,
it will be checked against known attack signatures.

In the VOTM 1TMV version, all shared data structures
are allocated in a TMV. However, in the VOTM 2TMV ver-
sion, the task queue and the highly contentious dictionary
structure are allocated in separate TMVs.

Speedup of both VOTM versions saturates at around 1.59
at N = 8 and speedup of the TinySTM version saturates
at 1.56 at N = 4 (Figure 9). Then as N increases further,
speedup of the VOTM 2TMV version decreases slightly to
1.58 at N = 16, whereas speedup of the VOTM 1TMV and
TinySTM versions drops to 1.11 and 0.52 respectively.

Number of aborts at N = 16 for VOTM 2TMV,
VOTM 1TMV and TinySTM are 10,396,152, 8,281,400 and
1,238,254,062 respectively.

The performance gain in the VOTM 2TMV version
over VOTM 1TMV version can be attributed to allocat-
ing the task queue in a separate TMV from the highly
contentious dictionary. Therefore access to the task queue
is not restricted by RAC access restrictions on the highly
contentious dictionary.

In this application, the majority of time is spent in trans-
actions which are memory-intensive and highly contentious.
Therefore even when VOTM reduces contention by limiting
admission of processes to TMVs, the speedup is still low.
For the same reason, the pure lock-based version fails to
show speedup because the lock guarding the dictionary

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 2 4 6 8 10 12 14 16

S
p

e
e

d
u

p

Num Procs

TinySTM
VOTM 1TMV

VOTM 2TMVs
Pure lock

Figure 9. Speedup of Intruder

structure abolishes concurrency.

D. Applications where RAC has neutral effects

In applications with long transactions with low con-
tention, such as Labyrinth and Vacation, there are no needs
to restrict access, therefore RAC allows free entry to TMV,
which is the behaviour of traditional TM models. In this
case, RAC cannot improve performance further, however
applications show that RAC has little extra overheads.

On the other hand, in applications such as Yada where the
majority of computation time is spent in transactions that
have high contention, RAC does not improve performance
because even if RAC decrease contention and improves
progress by restricting admission of processes to the TMV,
concurrency will also be abolished in this type of applica-
tions.

1) Labyrinth and Vacation - medium and long transac-
tion with low contention: Labyrinth finds the shortest path
between pairs of starting and ending points in a maze, which
is implemented as a shared grid. The shared grid is accessed
with long transactions with low contention. The input file
“random-x512-y512-z7-n512.txt” is used. The shared grid
is allocated as a TMV in the VOTM version. Since access
to the grid cannot be divided without a complete rewrite
of the algorithm, the pure lock-based version simply use a
lock to protect the access of the grid.

Vacation simulates the operation of a travel agency man-
ager. In this application, the car, room, flight and customer
tables are implemented as shared red-black trees. Each
process simulates a client. Each task consists of a set of
operations including a client adding or removing car, room
and/or flight reservations. In this applications, tasks are
equally divided between clients (processes). A transaction
starts when a task is evaluated. At the end of the task, the
process will check whether restraints are met (such as client
budget, flight or room occupancy etc.) and will commit
the transaction, otherwise the transaction will be aborted
and restarted. Transactions are long and with a moderately
high memory accesses, but with low contention. Default
parameters “-n4 -q60 -u90 -r1048576 -t4194304” are used.

 0

 2

 4

 6

 8

 10

 12

 0 2 4 6 8 10 12 14 16

S
p

e
e

d
u

p

Num Procs

TinySTM
VOTM

Pure lock

Figure 10. Speedup of Labyrinth

Since all tables (red-black trees) can be accessed in a
transaction, they are allocated together in a single TMV in
the VOTM version. In addition, since all tables are accessed
together atomically, the critical section cannot be broken
down in the pure lock-based version, therefore a single lock
is used to protect the critical section.

Both applications have low contention. At N = 16,
Labyrinth has 202 and 195 aborts for TinySTM and VOTM
respectively, given that there are 1056 transactions. For
Genome, there are approximately 2.48 million transactions,
and with 64,595,371 and 83,274 aborts for TinySTM and
VOTM respectively. For Vacation, there are approximately
4.2 million transactions, and with 1442 and 1060 aborts for
TinySTM and VOTM respectively.

As a result, the RAC protocol in VOTM most of the
time admits all processes to the views and thus behaves the
same as TinySTM. However, both Labyrinth and Genome
show that RAC has little overhead. At N = 16, speedup
of Labyrinth in TinySTM and VOTM are similar (9.16 and
9.15 respectively) (Figure 10) and

Speedup of Vacation in TinySTM and VOTM are 4.27
and 4.05 respectively (Figure 11). The difference between
TinySTM and VOTM in Vacation can be due to RAC
overhead in high number of transactions. Despite low con-
tention, the relative low speedup across all cases in Vacation
can be attributed to uneven load balancing problems when
tasks are divided between processes.

In all applications mentioned above, the pure lock-based
version has poor speedup, as every array, every hash table,
and in the case of Vacation, the entire shared memory, are
protected by a lock and thus accessed serially.

2) Yada - high contention long transaction within which
the majority of the computation takes place: Yada im-
plements Ruppert’s algorithm for Delaunay mesh refine-
ment [28]. In this application, the mesh is shared be-
tween processes and is allocated as a TMV in the VOTM
version. The mesh view cannot be subdivided without a
complete rewrite of the algorithm. Therefore, the mesh
is also protected by a single lock in the pure lock-based
version. In this application, transactions are long, and are

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 2 4 6 8 10 12 14 16

S
p

e
e

d
u

p

Num Procs

TinySTM
VOTM

Pure lock

Figure 11. Speedup of Vacation

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 2 4 6 8 10 12 14 16

S
p

e
e

d
u

p

Num Procs

TinySTM
VOTM

Pure lock

Figure 12. Speedup of Yada

also computational and memory-access intensive. There-
fore, they have high contention. Default parameters “-a15
-i inputs/ttimeu1000000.2” are used in this experiment.

In this algorithm, the bulk of the computation in the
algorithm occurs in transactions. Therefore as shown in
Figure 12, the pure lock-based version (access to the shared
mesh structure guarded by a lock, instead of transaction)
does not have any speedup. Also despite VOTM cuts the
number of aborts from 117,284,245 (TinySTM) to 814754
at N = 16, restricting admission still does not help since
Yada involves heavy computation in a highly contentious
critical section and restricting admission affects its concur-
rency. In this situation, it is hard for RAC to find the optimal
Q (if it exists). If Q is small, the number of aborts is low
but there is no enough concurrency; if Q is large, there are
sufficient concurrent computational transactions but there
are many conflicts as well. Therefore, the adjustment of
Q is neutral to the performance. As a result, speedup of
VOTM (1.36) is slightly lower than speedup of TinySTM
(1.42) due to the extra overhead of RAC. However, this is
the only application we find so far that RAC cannot help
much under high contention situations.

IV. RELATED WORK

There have been a large amount of work on contention
management in TM systems in the past years. Contention

management mechanisms can be divided into two cate-
gories:

A. In-transaction conflict resolution

Many existing algorithms on TM contention management
resolve conflicts within a transaction after these conflicts
occur, and decide which transaction proceeds/commits and
how other transactions are blocked or aborted [19–21, 29–
32].

For example, there has been some recent work on in-
transaction conflict resolution published by the Tanger
group at the Universität Dresden [32]. It proposes to allocate
different disjoint memory structures into different “memory
pools”. Since a program may have disjoint shared memory
structure that have different access pattern (e.g difference
in contention and ratio of RO or RW accesses), access
to each memory pool can be separately optimized. This
optimization shares the same data-partitioning philosophy
as VOTM. However, instead of restricting the number of
processes accessing the same TMV as in our RAC scheme,
this optimization dynamically adjusts the granularity of the
pool from single-pool to word-size in high contention to
avoid conflicts. Since RAC and the adjustment of granular-
ity are complementary, the system in [32] can adopt RAC
to further improve performance if the number of processes
accessing each pool is tracked.

TM systems like DSTM [19, 29], SXM [20] and McRT-
STM [30] also adopt advanced contention management.
Like TinySTM, they use an encounter-time locking system
that locks each object as it is accessed. When more than one
transaction attempts to have write access to the same object,
the contention manager in the TM systems will choose one
transaction to proceed according to the chosen contention
policy, with the aim to minimize wasted computation and
ensure progress of all transactions. Other transactions will
be blocked or aborted according to the policy. Blocked
transactions will retry using a protocol similar to expo-
nential backoff, and can abort if necessary. Compared with
the late-locking system used in TL-2 [21] and NOrec [33],
the early-locking system can reduce wasted computation by
aborting early.

However, in either early-locking or late-locking cases, in-
transaction conflict resolution algorithms mentioned above
only solve conflicts after they have been detected, but
processes are still freely admitted into transactions and/or
restart aborted transactions, therefore aborts cannot be
stemmed in high contention and work is still waste by
transactions that eventually aborts.

B. Transaction scheduling

Recently, some transaction scheduling algorithms has
evolved to control admission of processes into transactions
when contention is high, aiming at preventing conflicts
before they occur and therefore reducing wasted work on
aborted transactions. This family of transactional schedul-

ing algorithms works orthogonally with the in-transaction
conflict resolution algorithms mentioned above.

For example, the admission control algorithm in [22]
is similar to RAC, where the transaction commit ratio
(TCR) (the percentage of committed transactions in the
total number of transactions executed) is used to determine
contention and adjust admission quota (Q). If TCR is below
the lower threshold, contention is considered as high, and
Q will be decreased. Conversely, if TCR is above the upper
threshold, contention is considered as low, and Q will be
is increased (if Q is not already equals to the number of
processes). In addition, if Q changes, the TCR sampling
interval decreases to improve response time to contention
changes. If the admission quota stays over a certain number
of samples, then the TCR sampling interval decreases to
reduce overheads.

Transaction scheduling algorithms such as [23] use a
process-local contention score and when a process experi-
ences high contention, it queues the starting transaction to
a central scheduler, which will execute queued transactions
serially. [24] adopts a similar approach, except when a
process experiences high contention, it uses a heuristic
approach that predicts read and write sets of the starting
transaction using read and write sets of previous trans-
actions of the processes. If any address in the predicted
read and write sets is being written by any other currently
executing transactions, then the starting transaction will be
queued to be executed serially. Otherwise the transaction
executes immediately. This algorithm relies on heuristic
prediction of what will be read/written in the starting
transactions.

Both transaction scheduling algorithms mentioned above
control access to the entire TM as a whole, whereas
VOTM allows separate access control to different TMVs.
As discussed before, in VOTM, concurrent access of a TMV
with low contention will not be affected by restrictions
placed on other TMVs with high contention. This separation
in VOTM has performance advantage as shown in our ex-
periment, which is not attainable with the above scheduling
algorithms. However, in the future, we can introduce the
adaptive sampling interval in [22] to further improve its
response to contention level changes for each TMV in
VOTM.

V. CONCLUSIONS AND FUTURE WORK

VOTM seamlessly integrates locking mechanism, atomic
variables, and transactional memory into one programming
paradigm. It can take advantage of the merits of both the
pessimistic and the optimistic approaches to concurrency
control. Among the three types of views in VOTM, AV
allows atomic operations on primitive shared variables with
minimal cost. SWV allows single-writer multiple-reader
access of complex data structures and is suitable for op-
erations such as I/O that have side-effects. TMV takes the
optimistic approach and allows concurrent access to more

complex data structures, and relieves contention using the
RAC scheme proposed in this paper.

VOTM allows the programmer to optimize performance
by placing each shared variable and data structure into
the correct type of view according to its access pattern.
In cases where the lock-based mechanism performs the
best, the programmer can use SWV and AV to enable
high performance. In cases where transactional memory is
more convenient and performs better, the programmer can
choose TMV. With TMV, the programmer does not need to
worry about the concurrency control of the view, because
concurrency control is left to the system (RAC) to decide
whether a locking mechanism or a transactional mechanism
should be used based on the contention situation of the
view. In future, for cases where TMV performs better, we
could even provide API for programmers to fine-tune their
programs by setting the admission quota Q of a view to
a specific value (e.g. 1 or some optimal value that RAC
performs the best).

This new programming paradigm enables transactional
memory to interact better with traditional lock-based code,
especially from semantic point of view. With VOTM, lock-
based code can be easily converted into code with SWV
or TMV by replacing acquire lock/release lock with ac-
quire view/release view and defining proper views for the
related data. This conversion ensures the consistent view-
oriented semantic of the whole program, without worrying
about the differences between transactional code and the
non-transactional code. In VOTM, the transactional seman-
tic can be clearly confined to a view when the view is
acquired. That is, we need only roll back the view and the
automatic (in-stack) variables when the transaction aborts.

In this paper, we have proved the concept of VOTM
through a plain implementation (version 0.1), though
VOTM is a new programming paradigm with promising
potentials and interesting issues to be further addressed.
The paper demonstrated memory partitioning through views
is feasible and efficient, and enables better performance in
transactional memory. It showed a nice tradeoff that has
brought performance gain as well as the integration of
different concurrency control mechanisms. Through parti-
tioning the shared memory, multiple concurrency control
mechanisms can be adopted and implemented on per view
basis. This leaves much room for optimization of concur-
rency control on per view basis for future research.

One issue with VOTM is that VOTM programs possibly
have the problem of priority inversion [34], since SWV uses
the locking mechanism to guard the view as in the lock-
based approach. However, if necessary, programmers can
choose to use TMV and AV only to avoid such a problem
in VOTM programs.

Another issue with VOTM programs is the blocking of
processes by RAC when Q is smaller than NPROCS. This
blocking seems to violate the lock-free or obstruction-free
feature of TM systems [35]. Even though this feature is
arguably necessary [36], RAC can quickly resolve this kind

of blocking when the contention becomes low and thus Q is
increased up to NPROCS, as long as Q does not become 1.
If necessary, RAC can completely avoid blocking by using
transactions even when Q equals 1, though it will lose some
performance gain. In this way, if the system discovers the
blocking is too long, the blocking can be easily lifted by
increasing Q. Actually, in normal situations, the blocking
in RAC is not worse than the live-locking in TM when
transactions abort each other without progress under high
contention.

A further issue with the current VOTM model is that
forbidding nested view acquire can affect program compos-
ability. For example, if a library function acquires a TMV,
the program would not be able to hold any views while
calling the library function. This issue will be addressed in
the future by allowing conditional nested view acquisition,
so that deadlock will not happen while nested view acqui-
sition is allowed conditionally. For example, we can forbid
SWV in library functions.

VOTM offers some optimizations for compiler support of
TM. Since data objects in a view are allocated contiguously
in memory space, it is easier for the compiler to detect
view access and automatically insert Tx read and Tx write
as required by software TM. Also enforcement of view
access can be imposed by the compiler. If a view is
acquired, the compiler can check if the accesses are inside
the address range of the view. If a program has acquired
one view but access another view, the compiler can notify
the programmer with error messages. Currently our VOTM
implementation does not have such enforcement. However,
the lack of this enforcement does not affect the correctness
of the VOTM implementation.

As a future work, we are going to investigate compiler
support for VOTM programming model such as detection
of view accesses and static declaration of SWV and TMV.
We will also investigate semantics and performance of
conditional nested view acquisition in VOTM. Other inter-
esting future issues are related to RAC, such as adaptive
adjustment of sampling interval and finding the optimal
parameters such as MIN and MAX for the abort/success
ratio. We will also investigate how to best adjust the
admission quota Q using more benchmarks such as RMS-
TM [37] and STMBench [38].

REFERENCES

[1] C. Cascaval, C. Blundell, M. Michael, H. W. Cain,
P. Wu, S. Chiras, and S. Chatterjee, “Software transac-
tional memory: Why is it only a research toy?” Queue,
vol. 6, pp. 46–58, September 2008.

[2] J. R. Larus and R. Rajwar, Transactional Memory,
ser. Synthesis Lectures on Computer Architecture.
Morgan and Claypool, 2007.

[3] L. Lamport, “A new solution of Dijkstra’s concur-
rent programming problem,” Commun. ACM, vol. 17,
no. 8, pp. 453–455, 1974.

[4] G. Peterson, “Myths about the mutual exclusion prob-
lem,” Information Processing Letters, vol. 12, no. 3,
pp. 115–116, 1981.

[5] A. Tanenbaum and M. Steen, Distributed Systems:
Principles and Paradigms, Chapter 5. Prentice Hall,
2002.

[6] M. Herlihy and J. E. B. Moss, “Transactional memory:
architectural support for lock-free data structures,”
SIGARCH Computer Architecture News, vol. 21, pp.
289–300, May 1993.

[7] D. B. Lomet, “Process structuring, synchronization,
and recovery using atomic actions,” in ACM Con-
ference on Language Design for Reliable Software,
March 1977, pp. 128–137.

[8] H. Kung and J. Robinson, “On the optimistic meth-
ods for concurrency control,” ACM Transactions on
Database Systems, vol. 6, no. 2, pp. 213–226, June
1981.

[9] P. Bernstein and N. Goodman, “Concurrency control in
distributed database systems,” ACM Computer Survey,
vol. 13, no. 2, pp. 185–221, June 1981.

[10] K.-C. Leung, Z. Huang, Q. Huang, and P. Werstein,
“Data race: Tame the beast,” Journal of Supercomput-
ing, vol. 51, no. 3, pp. 258–278, March 2010.

[11] J. Zhang, Z. Huang, W. Chen, Q. Huang, and
W. Zheng, “Maotai: View-oriented parallel program-
ming on CMT processors,” in Proceedings of the 37th
International Conference on Parallel Processing, ser.
ICPP ’08, 2008, pp. 636–643.

[12] Z. Huang, M. Purvis, and P. Werstein, “Performance
evaluation of view-oriented parallel programming,” in
Proceedings of the 34th International Conference on
Parallel Processing, ser. ICPP ’05. Oslo: IEEE
Computer Society, June 2005, pp. 251–258.

[13] L. Ceze, P. Montesinos, C. von Praun, and J. Torrellas,
“Colorama: Architectural support for data-centric syn-
chronization,” in Proceedings of the 13th International
Symposium on High-Performance Computer Architec-
ture, ser. HPCA-13, 2007, pp. 133–134.

[14] P. Felber, C. Fetzer, and T. Riegel, “Dynamic per-
formance tuning of word-based software transactional
memory,” in Proceedings of the 13th ACM SIGPLAN
Symposium on Principles and practice of parallel
programming, ser. PPoPP ’08. New York, NY, USA:
ACM, 2008, pp. 237–246.

[15] T. Riegel, P. Felber, and C. Fetzer, “A lazy snapshot
algorithm with eager validation,” in 20th International
Symposium on Distributed Computing, ser. DISC ’06,
September 2006.

[16] S. Chaudhry, “Rock: A SPARC CMT processor,” Sun
Microsystems, Tech. Rep., 2008.

[17] D. Dice, Y. Lev, M. Moir, and D. Nussbaum, “Early
experience with a commercial hardware transactional
memory implementation,” in Proceeding of the 14th
international conference on Architectural support for

programming languages and operating systems, ser.
ASPLOS ’09. ACM, 2009, pp. 157–168.

[18] R. Guerraoui and M. Kapalka, “The semantics of
progress in lock-based transactional memory,” in Pro-
ceedings of the 36th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages,
ser. POPL ’09. ACM, 2009.

[19] W. N. Scherer, III and M. L. Scott, “Advanced con-
tention management for dynamic software transac-
tional memory,” in Proceedings of the Twenty-Fourth
Annual ACM Symposium on Principles of Distributed
Computing, ser. PODC ’05, M. K. Aguilera and
J. Aspnes, Eds. ACM, 2005, pp. 240–248.

[20] R. Guerraoui, M. Herlihy, and B. Pochon, “Polymor-
phic contention management,” in Proceedings of the
19th International Symposium on Distributed Comput-
ing, ser. DISC ’05. LNCS, Springer, 2005, pp. 26–29.

[21] D. Dice, O. Shalev, and N. Shavit, “Transactional
locking II,” in Proceedings of the 20th International
Symposium on Distributed Computing, ser. DISC ’06,
September 2006.

[22] M. Ansari, C. Kotselidis, K. Jarvis, M. Luján, and
I. Watson, “Adaptive concurrency control for transac-
tional memory,” University of Manchester, Tech. Rep.,
2007.

[23] R. M. Yoo and H.-H. S. Lee, “Adaptive
transaction scheduling for transactional memory
systems,” in Proceedings of the twentieth annual
symposium on Parallelism in algorithms and
architectures, ser. SPAA ’08. New York, NY,
USA: ACM, 2008, pp. 169–178. [Online]. Available:
http://doi.acm.org/10.1145/1378533.1378564

[24] A. Dragojević, R. Guerraoui, A. V. Singh, and
V. Singh, “Preventing versus curing: avoiding conflicts
in transactional memories,” in Proceedings of the
28th ACM symposium on Principles of distributed
computing, ser. PODC ’09. New York, NY, USA:
ACM, 2009, pp. 7–16.

[25] C. Cao Minh, J. Chung, C. Kozyrakis, and K. Oluko-
tun, “STAMP: Stanford transactional applications for
multi-processing,” in Proceedings of The IEEE Inter-
national Symposium on Workload Characterization,
ser. IISWC ’08, September 2008.

[26] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and
A. Gupta, “The SPLASH-2 programs: Characteriza-
tion and methodological considerations,” in Proceed-
ings of the 22nd Annual International Symposium on
Computer Architecture, ser. ISCA ’95, 1995, pp. 24–
36.

[27] G. Reinelt, “TSPLIB95,” Institut für Angewandte
Mathematik, Universität Heidelberg, Tech. Rep., 1995.

[28] M. Kulkarni, L. P. Chew, and K. Pingail, “Using trans-
actions in Delaunay mesh generation,” in Workshop on
Transactional Memory Workloads, 2006.

[29] M. Herlihy, V. Luchangco, M. Moir, and W. N.

Scherer, III, “Software transactional memory for
dynamic-sized data structures,” in Proceedings of the
22nd annual symposium on Principles of distributed
computing, ser. PODC ’03. New York, NY, USA:
ACM, 2003, pp. 92–101.

[30] B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. C.
Minh, and B. Hertzberg, “McRT-STM: a high per-
formance software transactional memory system for
a multi-core runtime,” in Proceedings of the eleventh
ACM SIGPLAN symposium on Principles and practice
of parallel programming, ser. PPoPP ’06. New York,
NY, USA: ACM, 2006, pp. 187–197.

[31] V. Menon, S. Balensiefer, T. Shpeisman, A.-R. Adl-
Tabatabai, R. L. Hudson, B. Saha, and A. Welc,
“Practical weak-atomicity semantics for Java STM,”
in 20th ACM Symposium on Parallelism in Algorithms
and Architectures, ser. SPAA ’08. New York, NY,
USA: ACM, 2008, pp. 314–325.

[32] T. Riegel, C. Fetzer, and P. Felber, “Automatic data
partitioning in software transactional memories,” in
20th ACM Symposium on Parallelism in Algorithms
and Architectures, ser. SPAA ’08, June 2008.

[33] L. Dalessandro, M. F. Spear, and M. L. Scott, “NOrec:
streamlining STM by abolishing ownership records,”
in Proceedings of the 15th ACM SIGPLAN symposium
on Principles and practice of parallel programming,
ser. PPoPP ’10. New York, NY, USA: ACM, 2010,
pp. 67–78.

[34] B. W. Lampson and D. D. Redell, “Experience with
processes and monitors in Mesa,” Commun. ACM,
vol. 23, no. 2, pp. 105–117, 1980.

[35] R. Guerraoui and M. Kapalka, “On obstruction-free
transactions,” in 20th ACM Symposium on Parallelism
in Algorithms and Architectures, ser. SPAA ’08, 2008.

[36] R. Ennals, “Software transactional memory should not
be obstruction-free,” Intel Corporation, Tech. Rep.,
2006.

[37] G. Kestor, S. Stipic, O. S. Unsal, A. Cristal, and
M. Valero, “RMS-TM: A transactional memory bench-
mark for recognition, mining and synthesis applica-
tions,” in Proceedings of the 4th Workshop on Trans-
actional Computing, ser. TRANSACT ’09, 2009.

[38] R. Guerraoui, M. Kapalka, and J. Vitek, “STMBench7:
A Benchmark for Software Transactional Memory,” in
Proceedings of the Second European Systems Confer-
ence, ser. EuroSys ’07, 2007.

