
Department of Computer Science,
University of Otago

Technical Report OUCS-2004-09

View-Oriented Parallel Programming and

View-based Consistency

Authors:
Z. Huang, P. Werstein

Department of Computer Science, University of Otago
M. Purvis

Department of Information Science, University of Otago

Status: Submitted to the Fifth International Conference on Parallel and

Distributed Computing, Applications and Technologies (PDCAT'04)

Department of Computer Science,
University of Otago, PO Box 56, Dunedin, Otago, New Zealand

http://www.cs.otago.ac.nz/trseries/

View-Oriented Parallel Programming and View-based Consistency

Z. Huang†, M. Purvis‡, P. Werstein†
†Department of Computer Science

‡Department of Information Science
University of Otago, Dunedin, New Zealand

Email:hzy@cs.otago.ac.nz, mpurvis@infoscience.otago.ac.nz, werstein@cs.otago.ac.nz

Abstract

This paper proposes a novel View-Oriented Parallel
Programming style for parallel programming on cluster
computers. View-Oriented Parallel Programming is based
on Distributed Shared Memory. It requires the programmer
to divide the shared memory into views according to the
nature of the parallel algorithm and its memory access
pattern. The advantage of this programming style is that it
can help the Distributed Shared Memory system optimise
consistency maintenance. Also it allows the programmer
to participate in performance optimization of a program
through wise partitioning of the shared memory into views.
The View-based Consistency model and its implementation,
which supports View-Oriented Parallel Programming, is
discussed as well in this paper. Finally some preliminary
experimental results are shown to demonstrate the perfor-
mance gain of View-Oriented Parallel Programming.

Key Words: View-Oriented Parallel Programming, Dis-
tributed Shared Memory, Sequential Consistency, View-
based Consistency, Entry Consistency, Scope Consistency,
Lazy Release Consistency, Time selection, Processor selec-
tion, Data selection

1 Introduction

A Distributed Shared Memory (DSM) system can provide
application programmers the illusion of shared memory on
top of message-passing distributed systems, which facili-
tates the task of parallel programming in distributed sys-
tems. Distributed Shared Memory has become an active
area of research in parallel and distributed computing with
the goals of making DSM systems more convenient to pro-
gram and more efficient to implement [17, 8, 16, 6, 4, 3, 1,
10, 11].

The consistency model of a DSM system specifies order-
ing constraints on concurrent memory accesses by multiple
processors, and hence has fundamental impact on DSM sys-
tems’ programming convenience and implementation effi-
ciency. The Sequential Consistency (SC) model [15] has
been recognized as the most natural and user-friendly DSM
consistency model. The SC model guarantees that ”the re-
sult of any execution is the same as if the operations of all

the processors were executed in some (global) sequential
order, and the operations of each individual processor ap-
pear in this sequence in the order specified by its (own) pro-
gram” [15](p690). This means that in an SC-based DSM
system, memory accesses from different processors may be
interleaved in any sequential order that is consistent with
each processor’s order of memory accesses, and the orders
of memory accesses observed by different processors are
the same. One way to strictly implement the SC model is
to ensure all memory modifications be totally ordered and
memory modifications generated and executed at one pro-
cessor be propagated to and executed in that order at other
processors instantaneously. This implementation is correct
but it suffers from serious performance problems [19].

In practice, not all parallel applications require each pro-
cessor to see all memory modifications made by other pro-
cessors, let alone to see them in order. Many parallel ap-
plications regulate their accesses to shared data by synchro-
nization, so not all valid interleavings of their memory ac-
cesses are relevant to their real executions. Therefore, it
is not necessary for the DSM system to force a processor
to propagate all its modifications to every other processor
(with a copy of the shared data) at every memory modifi-
cation time. Under certain conditions, the DSM system can
select the time, the processor, and the data for propagat-
ing shared memory modifications in order to improve the
performance while still appearing to be sequentially consis-
tent [18]. For example, consider a DSM system with four
processors P1, P2, P3, and P4, where P1, P2, and P3 share a
data object x, and P1 and P4 share a data object y, as shown
in Fig. 1. The data object v is shared among processors at a
later time not shown in this scenario.

P1
P2
P3
P4 r(y)

w(y)
w(v)

w(x)
r(x) w(x)

r(x)

w: write r: read
program order

Figure 1: A scenario of a DSM program

Suppose all memory accesses to shared data objects are
serialized among competing processors by means of syn-
chronization operations to avoid data races. Under these
circumstances, the following three basic techniques can

1

be used for optimisation of memory consistency mainte-
nance [18].

• Time selection: Modifications on a shared data object
by one processor are propagated to other processors
only at the time when the data object is to be read by
them. For example, modifications on x by P1 may be
propagated outward only at the time when either P2 or
P3 is about to read x.

• Processor selection: Modifications on a shared data
object are propagated from one processor to only one
other processor which is the next one in sequence to
read the shared data object. For example, modifica-
tions on x by P1 may be propagated to P2 (but not to
P3) if P2 is the next one in sequence to read x.

• Data selection: Processors propagate to each other
only those shared data objects that are really shared
among them. For example, P1, P2, and P3 may propa-
gate to each other only data object x (not y and v), and
P1 and P4 propagate to each other only data object y
(not x).

To improve the performance of the strict SC model, a
number of Relaxed Sequential Consistency (RSC) models
have been proposed [7, 9, 14, 2, 13, 11], which perform one
or more of the above three selection techniques. RSC mod-
els can be also called conditional Sequential Consistency
models because they guarantee Sequential Consistency for
some class of programs that satisfy the conditions imposed
by the models. These models take advantage of the syn-
chronizations in data race free (DRF) programs and relax
the constraints on modification propagation and execution.
That means modifications generated and executed by a pro-
cessor may not be propagated to and executed at other pro-
cessors immediately. Most RSC models can guarantee Se-
quential Consistency for DRF programs that are properly
labelled [9] (i.e., explicit primitives, provided by the sys-
tem, should be used for synchronization in the programs).

However, properly-labelled DRF programs do not facil-
itate data selection in consistency models. There has been
some effort exploring data selection in consistency models.
Examples are Entry Consistency (EC) [2], Scope Consis-
tency (ScC) [13], and View-based Consistency (VC) [11].
Either they have to resort to extra annotations, or they can-
not guarantee the SC correctness of some properly-labelled
DRF programs. For example, EC requires data objects to
be associated with locks and barriers and ScC requires ex-
tra scopes to be defined, while VC cannot guarantee the SC
correctness of some properly-labelled DRF programs [12].
Those extra annotations are inconvenient and error-prone
for programmers. To facilitate the implementation of data
selection in consistency models with the SC correctness in-
tact, we propose a novel parallel programming style for
DSM, called View-Oriented Parallel Programming (VOPP).
This programming style can facilitate data selection in con-
sistency maintenance. Sequential Consistency can be guar-
anteed for the VOPP programs with the presence of data
selection in consistency maintenance.

The rest of this paper is organised as follows. Section 2
presents the VOPP programming style and some program
examples. Section 3 presents the VC model being associ-
ated with VOPP and its correctness. Section 4 discusses
implementation issues of the VC model. Section 5 com-
pares VOPP with related work. Section 6 presents and eval-
uates the preliminary performance results. Finally, our fu-
ture work on VOPP is suggested in Section 7.

2 View-Oriented Parallel Program-
ming (VOPP)

A view is a concept used to maintain consistency in dis-
tributed shared memory. A view consists of data objects that
require consistency maintenance as a whole body. Views
are defined implicitly by the programmer in his/her mind,
but are explicitly indicated through primitives such as ac-
quire view and release view. Acquire view means acquiring
exclusive access to a view, while release view means having
finished the access.

The programmer should divide the shared memory into
views according to the nature of the parallel algorithm and
its memory access pattern. Views must not overlap each
other. The views are decided in the programmer’s mind
and must be kept unchanged throughout the whole program.
A view must be accessed by processors through using ac-
quire view and release view, no matter if there is a data race
or not in the parallel program. Before a processor accesses
any objects in a view, acquire view must be called; after it
finishes operations on the view, release view must be called.
For example, suppose multiple processors share a variable
A which alone is defined as a view, and every time a pro-
cessor accesses the variable, it needs to increment it by one.
The code in VOPP is as below.

acquire_view(1);
A = A + 1;
release_view(1);

A processor usually can only get exclusive write access
to one view at a time in VOPP. However, VOPP allows a
processor to get access to multiple views at the same time
using nested primitives, provided there is at most one view
to write (in order that the DSM system will be able to de-
tect updates for only one view). The primitives for acquir-
ing read-only access to views are acquire Rview and re-
lease Rview. For example, suppose a processor needs to
read arrays A and B, and puts their addition into C, and A,
B and C are defined as different views numbered 1, 2, and
3 respectively, a VOPP program can be coded as below.

acquire_view(3);
acquire_Rview(2);
acquire_Rview(1);
C = A + B;
release_Rview(1);
release_Rview(2);
release_view(3);

2

To compare and contrast the normal DSM programs and
VOPP programs, the following parallel sum problem is
used, which is very typical in parallel programming. In this
problem, every processor has its local array and needs to
add it to a shared array. The shared array with size a size is
divided into nprocs views, where nprocs is the number of
processors. Finally the master processor calculates the sum
of the shared array. The normal DSM program is as below.

for (i = 0; i < nprocs; i++) {
j=(i+proc_id)%nprocs*a_size/nprocs;
k=((i+proc_id)%nprocs+1)*a_size/nprocs;
for (;j < k;j++)

shared_array[j] += local_array[j];
barrier(0);
}

if(proc_id==0){
for (i = a_size-1; i > 0; i--)

sum += shared_array[i];
}

The VOPP program has the following code pattern.

for (i = 0; i < nprocs; i++) {
j=(i+proc_id)%nprocs*a_size/nprocs;
acquire_view((i + proc_id)%nprocs);
k=((i+proc_id)%nprocs+1)*a_size/nprocs;
for (;j < k;j++)

shared_array[j] += local_array[j];
release_view((i + proc_id)%nprocs);
}

barrier(0);

if(proc_id==0){
for(j=0;j<nprocs;j++)acquire_Rview(j);
for (i = a_size-1; i > 0; i--)

sum += shared_array[i];
for(j=0;j<nprocs;j++)release_Rview(j);
}

In the VOPP program, acquire view and release view
primitives are added, while the normal DSM program only
uses barriers. These primitives do not add much complex-
ity to the VOPP program. On the contrary, they make the
programmer feel more clear about which part of the shared
array a processor needs to access. However, these primi-
tives generate messages in DSM systems. The more prim-
itives are used, the more messages have to be passed in
DSM systems. By comparing the above two programs, it
seems the VOPP program will generate more messages.
But if we look more closely at the two programs, we can
find the VOPP program has reduced the number of barri-
ers since it uses view primitives to achieve exclusive access
and thus does not need barriers in the first for loop. This ad-
vantage enables programmers to optimise VOPP programs
by reducing barriers, since barriers tend to be more time-
consuming than the view primitives (which will be demon-
strated in our experimental results).

Read-only access to views can be explicitly declared
with acquire Rview and release Rview in VOPP. Pro-
grammers can use them to improve the performance of
VOPP programs, since multiple read-only accesses to the
same view can be granted simultaneously, so that the
waiting time for acquiring access to read-only views is
very small. Programmers can use them to replace bar-
riers and read/write view primitives (acquire view and
release view) wherever possible to optimise VOPP pro-
grams.

The VOPP style allows programmers to participate in
performance optimization of programs through wise parti-
tioning of shared objects into views and wise use of view
primitives. VOPP does not place an extra burden on pro-
grammers since the partitioning of shared objects is an im-
plicit task in parallel programming and VOPP just makes
the task explicit. In this way, parallel programming is less
error-prone in terms of handling shared objects.

More importantly, VOPP offers a huge potential for effi-
cient implementations of DSM systems. When a view prim-
itive such as acquire view is called, only the data objects
associated with the related view need to be updated. There-
fore some optimal consistency maintenance protocol can be
designed based on this simplicity, and data selection can be
achieved straightforwardly.

VOPP requires that a view be defined initially and not
changed throughout the program. In this way, it has placed
some restriction on programming and thus has brought
some inconvenience to the programmer. To offer some flex-
ibility to the programmer, we provide some primitives such
as merge views to merge views into a global view as done
in TreadMarks’ barriers and/or to redefine views at some
stage of a program. The price paid for this flexibility, of
course, is the DSM efficiency.

To demonstrate more about the features of VOPP, we
provide the following VOPP program for a task-queue
based parallel algorithm. In the algorithm every processor
can access the task queue to either enqueue a new task or de-
queue a task. Before a processor enqueues a new task it gen-
erates a new view for the new task with acquire view(−1)
which will return a system-chosen view id. The VOPP code
is as below.

V = acquire_view(-1);
create_task(T);
release_view(V);
T.view_id = V;
acquire_view(0);
enqueue(task_queue, T);
release_view(0);

When a processor dequeues a new task, the VOPP code
is shown below. V and T are local variables, and T is a
structure with a pointer element pointing to a shared task.

acquire_view(0);
dequeue(task_queue, T);
release_view(0);
V = T.view_id;

3

acquire_view(V);
consume_task(T);
release_view(V);

3 View-based Consistency

A processor will modify only one view between ac-
quire view and release view, which should be guaranteed
by the programmer. Therefore, we can detect modified data
objects for each view in order to achieve view consistency.

Consistency maintenance in views requires updating
data objects of a view before a processor calls acquire view.
More precisely, the following consistency conditions are
given for the View-based Consistency (VC) model that sup-
ports the VOPP programs. Any implementation of VC
should satisfy these conditions.

Definition 1 Condition for View-based Consistency

• Before a processor Pi is allowed to access a view
by calling acquire view, all previous write accesses to
data objects of the view must be performed with re-
spect to Pi according to their causal order.

A write access to a data object is said to be performed
with respect to processor Pi at a time point when a subse-
quent read access to that object by Pi returns the value set
by the write access.

In VOPP, barriers are only used for synchronisation and
have nothing to do with consistency maintenance for DSM.

Since a processor will modify only one view between
acquire view and release view, which should be guaranteed
by the programmer, we can detect modified data objects for
each view and use them later to maintain the consistency of
the view.

SC correctness

Processors are synchronised to modify the same view, one
after another, but may modify different views concurrently
in any view-oriented parallel program. Based on this obser-
vation, for any parallel execution of a view-oriented parallel
program, we can produce a global sequential order of the
modifications on views. In this sequential order, the modifi-
cations on the same view are ordered in the same way as the
synchronised order of the parallel execution, and the modi-
fications on different views are put in program order if they
are executed sequentially in the program; otherwise they are
parallel and put in any order. Parallel modifications on dif-
ferent views can be executed in any order, which will not
affect the execution result. Obviously, according to the con-
sistency condition for VC, the parallel execution result of
the program under VC is the same as the above sequential
execution of the modifications. Therefore, a global sequen-
tial order has been found to match the parallel execution re-
sult under VC. According to the definition of the SC model,
VC can guarantee Sequential Consistency for view-oriented
parallel (VOPP) programs.

In this way, VC achieves time selection (at the time of
calling acquire view), processor selection (by passing an
updated view to the next processor waiting to access the
view), and data selection (by updating only the data objects
of the view).

Any implementation of the VC model should conform
with the above consistency condition. There are two impor-
tant technical issues in the implementation: view detection
and view consistency. View detection means identifying all
the data objects (particularly modified objects) of a view.
View consistency means updating all the modified data ob-
jects of a view before a processor gets (exclusive) access to
the view using acquire view.

Correctness and accuracy are two important issues in
view detection. A correct view should include all data ob-
jects that are previously modified while the view is exclu-
sively accessed. An accurate view should include those and
only those data objects. The correctness of view detection
must be satisfied in a VC implementation, while inaccu-
racy of view detection may only affect its performance (e.g.,
propagation of irrelevant modifications of data objects).

Fig. 2 shows how the VC model works. In Fig. 2, there
are two views numbered 1 and 2. View 1 includes y when
P4 enters the view, and view 2 includes x when P2 and P3

enter the view. When P4 enters view 1, only the modifica-
tion of y is propagated to the processor to update the view.
For P2 and P3, only the modification on x is propagated to
them to update view 2. The view acquisition and modifica-
tion propagation are separate in the figure, but they can be
combined in an implementation in order to improve DSM
performance.

In the following section, we will discuss our implemen-
tation of the VC model.

4 Implementation

We have implemented the VC model based on Tread-
Marks [1], which is a page-based DSM system. In Tread-
Marks, a diff is used to represent modifications on a page.
Initially a page is write-protected. When a write-protected
page is first modified by a processor, a twin of the page is
created and stored in the system space. When the modifica-
tions on the page are needed, a comparison of the twin and
the current version of the page is done to create a diff, which
can then be used to update copies of the page in other pro-
cessors. We use this same mechanism in our view detection.
We associate all modifications (in the form of diffs) made
between acquire view and release view with the related
view.

We have also implemented the VC model based on the
home-based protocol [20], in which every page has a home
node (processor) and the diffs of a page are passed to its
home to maintain an up-to-date copy (called home page),
and thus to update a page is to fetch the home page from the
home node. This version of VC implementation uses pages
to represent data objects, which is a coarse-grained solution
to data selection.

4

P2

P1

P3

P4 y

program order

A(1)w(y)R(1)

x

A(2)w(x)R(2)

A(3)w(v)R(3) A(2) r(x)w(x)R(2)

A(2) r(x)R(2)

A(1) r(y)R(1)

x

x

: request update on x and update x at the processor

w: write r: read A: acquire_view R: release_view

Figure 2: View-based Consistency in action

4.1 View detection

In consistency maintenance we only need to know which
are the modified data objects and then update them. Like-
wise, to maintain the consistency of a view, we only need
to update the modified data objects in the view. Therefore,
we are not interested in the unchanged pages of a view and
thus only the modified parts of pages (in the form of diffs)
are recorded for the related view in our implementation of
view detection.

In our implementation, view detection is achieved at
run time. We use the concept of interval in TreadMarks
to represent view modifications. An interval is a data
structure which represents the modifications (e.g. diffs in
TreadMarks and page numbers in the home-based proto-
col) made on a number of pages between acquire view
and release view. We make an interval whenever a proces-
sor finishes updating a view by calling release view. Note
that when the interval is created, we make the diffs of re-
lated pages immediately. The diffs can be piggy-backed on
a view-granting message when another processor acquires
access to the view, which is another potential optimisation
for our VC implementation. When we implement VC with
the home-based protocol, the diffs are passed to respective
home nodes when an interval is created.

When an interval is created, it is associated with the
related view whose ID number is the argument of the
release view causing the creation of the interval. This in-
terval represents a modification of data objects in the view
and will be used to update the view later when a processor
accesses the view with acquire view. Once an interval is
created, the related view’s version number is increased by
one.

4.2 View consistency

To achieve view consistency is to make a view up to date.
Before a view is to be accessed by a processor calling
acquire view, view consistency must be achieved for the
view. Write notices are created according to the intervals as-
sociated with the related view and the current version num-
ber of the view of the calling processor. Those write notices
are passed to the calling processor to invalidate the related
pages. When an invalid page is accessed, a page fault will

cause the processor to either fetch the diffs or to fetch the
home page in the home-based consistency protocol. In this
way view consistency is achieved.

View consistency is an area where we can improve the
performance of the DSM system based on our VC model.
In TreadMarks diffs are used to update pages, while home
pages are used to update pages in the home-based protocol.
In our experiments we found, when diffs are accumulating,
more data and messages are passed through the network in
TreadMarks than in the home-based protocol, since the cost
of updating a page in the home-based protocol is constant
and involves only one transmission of a page. Therefore, we
can use pages instead of diffs to update a view in order to
avoid transmission of accumulating diffs. We also can pass
the pages related to a view directly from one processor to
the next processor that is going to access the view in order to
avoid page faults and page requests sent to the home nodes
(Diff requests are still needed when false sharing occurs, of
course, but they tend to be rare).

5 Comparison with related work

VOPP is different from the programming style of Entry
Consistency in terms of the association between data ob-
jects and views (or locks). Entry Consistency [2] requires
the programmer to explicitly associate data objects with
locks and barriers in programs, while VOPP only requires
the programmer to implicitly associate data objects with
views (in the programmer’s mind). The actual association is
achieved in view detection in the implementation of the VC
model. VOPP is more flexible than the programming style
of Entry Consistency.

VOPP is also different from the programming style of
Scope Consistency in terms of the definition of view and
scope. Views in VOPP are non-overlapped and constant
throughout a program, while scopes in ScC can be over-
lapped and are merged into a global scope at barriers.

VOPP is more convenient and easier for programmers
than the message-passing programming style such as MPI
or PVM, since it is still based on the concept of shared
memory (except the shared memory is divided into multi-
ple non-overlapped views). Moreover, VOPP provides ex-
perienced programmers an approach to fine-tune the perfor-

5

mance of their programs by carefully dividing the shared
memory into views. Partitioning of shared memory into
views becomes part of the design of parallel algorithm in
VOPP. This approach offers the potential for programmers
to make VOPP programs perform as well as MPI programs.

6 Preliminary experimental results

In this section, we present our preliminary experimental re-
sults based on two (currently sub-optimal) versions of the
VC implementation. The first VC version (called V Cd)
uses diffs to update views, while the second one (called
V Ch) uses the home-based protocol to achieve view consis-
tency. Their performance is compared with that of the LRC
(Lazy Release Consistency) model implemented in Tread-
Marks [1]. We have tested our implementations on two clus-
ters. One cluster, called Vodca, consists of 8 PCs running
Linux 2.4, which are connected by a 100 Mbps Ethernet
hub. Each of the PCs has a 800 MHz processor and 128
Mbytes of memory. The other cluster, called Godzilla, con-
sists of 32 PCs running Linux 2.4, which are connected by
a N-way 100 Mbps Ethernet switch. Each of the PCs has a
350 MHz processor and 192 Mbytes of memory. The page
size of the virtual memory for both clusters is 4 KB.

We chose one application, Integer Sort (IS), in the exper-
iment because of the limited resources available for convert-
ing the applications to VOPP programs. IS (Integer Sort) is
a benchmark application provided by TreadMarks research
group. It ranks an unsorted sequence of N keys. The rank
of a key in a sequence is the index value i that the key would
have if the sequence of keys were sorted. All the keys are in-
tegers in the range [0, Bmax] and the method used is bucket
sort. The problem size in our experiment is (225 × 215, 40).
The memory access pattern is very similar to the pattern
of our sum example in Section 2. IS is an application that
cannot demonstrate the performance advantage of our VC
model since it does not need locks for synchronisation, but
we will see how the VOPP program itself can improve its
performance.

V C vs. LRC vs. V Cvopp

Table 1 shows the running time (in sec.) of IS on LRC and
VC. V Cd is the VC implementation using diffs to update
views, which is the same as the LRC implementation in
TreadMarks. V Cdvopp shows the running time of an opti-
mised VOPP program of IS which uses less barriers. The
table shows the running time on the cluster Godzilla for 2
nodes, 4 nodes, 8 nodes and 16 nodes. The running time
on one node is not displayed because it is abnormally large
(around 4000 seconds) due to excessive memory usage on
one node.

Table 1 shows that VC is generally more efficient than
LRC, with a 21% performance gain on 16 nodes. The opti-
mised VOPP program runs generally faster than the original
one, with 8.5% performance gain on 16 nodes.

2-node 4-node 8-node 16-node
LRC 143.8 78.4 56.7 68.7
V Cd 144.6 77.5 51.5 54.3

V Cdvopp 144.3 77.4 49.8 49.7

Table 1: Running time of IS on LRC and VC

Table 2 shows the detailed statistics of IS on 16 nodes.
In the table, Ba is the number of barriers called in the pro-
gram, Ac is the number of lock/view acquire messages, Da
is the total amount of data transmitted, Msg is the number
of messages, and Rxm is the number of messages retrans-
mitted. From the statistics we find the number of messages
and the amount of data transmitted in VC are more than
in LRC, which may not be the case in many other applica-
tions. Then why is the VC implementation faster than LRC?
The reason is two-fold. The barriers in LRC need to main-
tain consistency while those ones in VC do not. The con-
sistency maintenance in barriers in LRC is normally time-
consuming and centralised at one processor which can be
a bottleneck, while consistency maintenance in VC is dis-
tributed among the processors through the view primitives.

Ba Ac Da Msg Rxm
LRC 682 1 1.23G 123941 118
V Cd 682 20481 1.27G 180212 2

V Cdvopp 122 20481 1.27G 163418 12

Table 2: Statistics of IS on 16 nodes of Godzilla

In addition, LRC has more message loss than VC ac-
cording to the statistics. On 16 nodes of Godzilla, LRC has
118 retransmissions while VC only has 2 and 12 retrans-
missions. On 8 nodes of Vodca as shown in Table 3, the
number of retransmissions in LRC is as high as 782. Nodes
in Vodca are connected by a hub, so the bursty traffic at
barriers causes more message loss. One message retrans-
mission results in about 1 second waiting time. Therefore,
the distribution of data traffic in VC can reduce message re-
transmissions and improve the performance of applications.

Time Ba Ac Da Msg Rxm
LRC 324.7 362 1 285M 44288 782
V Cd 256.8 122 5121 297M 53255 410

Table 3: Statistics of IS on 8 nodes of Vodca

Home-based vs. diff-based page consistency

Table 4 shows the running time of IS on the two different
VC implementations: V Cd and V Ch. The performance of
V Ch is significantly better than that of V Cd when the num-
ber of nodes becomes larger. On 16 nodes of Godzilla, V Ch

performs 40.9% faster than V Cd!

The data (mainly diffs) transmitted in V Cd is signifi-
cantly increased when the number of nodes is large. This

6

2-node 4-node 8-node 16-node
V Cd 144.6 77.5 51.5 54.3
V Ch 143.6 75.5 43.5 32.1

Table 4: Running time of IS on home-based and diff-based
protocols

diff accumulation problem affects the performance of diff-
based implementations. The home-based implementation
V Ch can resolve diff accumulation by using home pages
and thus reduce the amount of data transmitted, as demon-
strated in Table 5. The amount of data reduced in V Ch is
81.5% compared with V Cd.

Time Ba Ac Da Msg Rxm
V Cd 32.1 682 20481 1.27G 180212 2
V Ch 54.3 682 20481 0.235G 170727 0

Table 5: Statistics of IS on 16 nodes of Godzilla

From the above results we realize that VC can be further
improved if accumulated diffs can be integrated into a single
diff. The single diff should integrate all previous modifica-
tions just as the home page does in home-based protocol.
Also we can piggy-back those diffs associated with a view
on the view granting messages. This improvement is one of
our objectives for the near future.

7 Conclusions

We have proposed a novel VOPP programming style for
DSM parallel programs on cluster computers. Our prelim-
inary results have demonstrated the performance advantage
of VOPP. We will use more applications to demonstrate its
performance gain and its programming features. We will
also investigate efficient implementation techniques of the
associated VC model, such as an update protocol based on
diff integration in order to integrate accumulated diffs for
the same view. Our ultimate goal is to make shared mem-
ory parallel programs as efficient as message-passing paral-
lel programs such as MPI programs.

References

[1] C.Amza, A.L. Cox, S. Dwarkadas, P. Keleher, H. Lu,
R. Rajamony, W. Yu, and W. Zwaenepoel: “Tread-
Marks: Shared memory computing on networks of
workstations,” IEEE Computer, 29(2):18-28, Febru-
ary 1996.

[2] B.N. Bershad, M.J. Zekauskas: “Midway: Shared
memory parallel programming with Entry Consis-
tency for distributed memory multiprocessors”, CMU
Technical Report CMU-CS-91-170, Carnegie-Mellon
University, September 1991.

[3] B.N. Bershad, M.J. Zekauskas, and W.A. Sawson:
“The Midway distributed shared memory system,” In

Proc. of IEEE COMPCON Conference, pp528-537,
1993.

[4] J.B. Carter, J.K. Bennett, and W. Zwaenepoel: “Im-
plementation and performance of Munin,” In Proceed-
ings of the 13th ACM Symposium on Operating Sys-
tems Principles, Pages 152-164, Oct. 1991.

[5] J.B. Carter, J.K. Bennett, and W. Zwaenepoel: “Tech-
niques for reducing consistency-related information in
distributed shared memory systems,” ACM Transac-
tions on Computer Systems, 13(3):205-243, August
1995.

[6] P. Dasgupta, et al: “The design and implementation of
the Clouds distributed operating system,” Computing
Systems Journal, 3, Winter 1990.

[7] M.Dubois, C.Scheurich, and F.A.Briggs: “Memory
access buffering in multiprocessors,” In Proc. of the
13th Annual International Symposium on Computer
Architecture, pp.434-442, June 1986.

[8] B. Fleisch and R.H. Katz: “Mirage: A coherent dis-
tributed shared memory design,” In Proc. of the 12th
ACM Symposium on Operating Systems Principles,
pp211-223, Dec. 1989.

[9] K. Gharachorloo, D.Lenoski, J.Laudon: “Memory
consistency and event ordering in scalable shared
memory multiprocessors,” In Proc. of the 17th Annual
International Symposium on Computer Architecture,
pp15-26, May 1990.

[10] Z. Huang, W.-J. Lei, C. Sun, and A. Sattar: “Heuristic
diff acquiring in Lazy Release Consistency model,” In
Proc. of 1997 Asian Computing Science Conference
(ASIAN’97), LNCS 1345, Springer-Verlag, pp.98-109,
Dec. 1997.

[11] Z. Huang, C. Sun, M. Purvis, and S. Cranefield:
“View-based Consistency and its implementation”, In
Proc. of the First IEEE/ACM Symposium on Cluster
Computing and the Grid, pp.74-81, IEEE Computer
Society, 2001.

[12] Z. Huang, C. Sun, S. Cranefield, and M. Purvis:
“A View-based Consistency model based on
transparent data selection in distributed shared
memory”, Technical Report OUCS-2004-03, Dept
of Computer Science, Univ. of Otago, 2004.
(http://www.cs.otago.ac.nz/research/techreports.html)

[13] L. Iftode, J.P. Singh and K. Li: “Scope Consistency: A
bridge between Release Consistency and Entry Con-
sistency,” In Proc. of the 8th Annual ACM Symposium
on Parallel Algorithms and Architectures, 1996.

[14] P. Keleher: “Lazy Release Consistency for distributed
shared memory,” Ph.D. Thesis, Rice Univ., 1995.

7

[15] L. Lamport: “How to make a multiprocessor computer
that correctly executes multiprocess programs,” IEEE
Transactions on Computers, 28(9):690-691, Septem-
ber 1979.

[16] D. Lenoski, et al: “The Stanford DASH multiproces-
sor”, IEEE Computer, 25(3):63-79, March 1992.

[17] K.Li, P.Hudak: “Memory coherence in shared virtual
memory systems,” ACM Trans. on Computer Systems,
Vol. 7, pp321-359, Nov. 1989.

[18] C. Sun, Z. Huang, W.-J. Lei, and A. Sattar: “To-
wards transparent selective sequential consistency in
distributed shared memory systems”, In Proc. of the
18th IEEE International Conference on Distributed
Computing Systems, pp.572-581, Amsterdam, May
1998.

[19] A.S. Tanenbaum: Distributed operating systems,
Prentice Hall, 1995.

[20] Y. Zhou, L. Iftode, and K. Li: “Performance evalua-
tion of two home-based lazy release consistency pro-
tocols for shared virtual memory systems,” In Proc.
of the Operating Systems Design and Implementation
Symposium, pp.75-88, October 1996.

8

