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MONOTONIC SEQUENCE GAMES

M. H. ALBERT, R. E. L. ALDRED, M. D. ATKINSON, C. C. HANDLEY,
D. A. HOLTON, D. J. MCCAUGHAN, AND B. E. SAGAN

Abstract. In a monotonic sequence game, two players alternately
choose elements of a sequence from some fixed ordered set. The
game ends when the resulting sequence contains either an ascend-
ing subsequence of length a or a descending one of length d. We
investigate the behaviour of this game when played on finite lin-
ear orders or Q and provide some general observations for play on
arbitrary ordered sets.

1. Introduction

Monotonic sequence games were introduced by Harary, Sagan and West
in [6]. We paraphrase the description of the rules as follows:

From a deck of cards labelled with the integers from 1
through n, two players take turns choosing a card and
adding it to the right hand end of a row of cards. The
game ends when there is a subsequence of a cards in the
row whose values form an ascending sequence, or of d
cards whose values form a descending sequence.

The parameters a, d, and n are set before the game begins. There are
two possible methods for determining the winner of the game. In the
normal form of the game, the winner is the player who places the last
card (which forms an ascending or descending sequence of the required
length). In the misère form of the game, that player is the loser. In
[6] these are called the achievement and avoidance forms of the game
respectively.

As a consequence of the Erdős-Szekeres theorem [5], the game cannot
end in a draw if n > (a− 1)(d− 1). It is therefore natural to attempt
to classify the parameters (a, d, n) according to whether the first player
can force a win, the second player can force a win, or either player can
ensure at least a draw. Some results towards such a classification were
presented in [6] and the problem of extending and generalising these
results was posed there and by Sagan in [8].
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2 ALBERT ET AL.

In this paper we will report on some progress on this and related prob-
lems. As regards the original game, we have been able to extend the
computer-assisted analysis to decide many instances which were left
open in [6]. We also provide some general results concerning the long
run behaviour of these games (that is, for fixed a and d but large n).
However, most of the work reported here deals with variations of the
original game. In particular, we consider the case where the deck of
cards is Q rather than a finite linear order. Finally, we examine some
other variations of the game obtained either by relaxing the rules, or
by playing with a deck of cards that is partially ordered. We list some
open problems in the final section of the paper.

We adopt, and in some cases adapt, the notation and terminology
of Winning Ways [1, 2, 3, 4] in discussing our results. This differs
somewhat from that used in [6] so, where necessary, we will also provide
translations of the results from that paper.

2. The general framework

Any version of the monotonic sequence game specifies at the outside,
a deck D which is simply some partially ordered set, and two positive
integer parameters a and d which we call the critical lengths of as-
cending and descending sequences respectively. There are two players,
A and B (for convenience in assigning pronouns, A is assumed to be
male and B female), who alternately choose an element which has not
previously been chosen from the deck and add it to a sequence whose
elements consist of the cards chosen up to this point. This sequence
will be called the board. Conventionally, A plays first while B plays
second. In the basic form of the game the board is constructed from
left to right. That is, if the current board is bc · · · v and the next player
chooses a value w ∈ D then the new board is bc · · · vw. An ascending
subsequence of length a or a descending subsequence of length d of
the board is called a critical sequence. As soon as the board contains
a critical sequence the game ends. In normal play, the winner is the
player whose move terminated the game. In misère play that player is
the loser. We henceforth assume that a, d ≥ 2 since the cases a = 1
or d = 1 are completely trivial. If the deck is exhausted without cre-
ating a critical sequence, then the game is considered drawn. If the
deck is infinite then the game is also considered drawn if play proceeds
without termination. By default we assume that normal play is being
considered unless otherwise noted.
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Proposition 1. If D is finite and contains a chain of length greater
than (a− 1)(d− 1), or D is infinite and contains no infinite antichain
then no draws are possible in either normal or misère play.

Proof. In the first case any supposedly drawn board would contain all
the elements of the specified chain. However, by the Erdős-Szekeres
theorem any such sequence contains a critical sequence. In the latter
case a similar result follows from the well-known observation that, as
a consequence of Ramsey’s theorem, any infinite sequence of elements
from a partially ordered set contains an infinite subsequence which is
either ascending, descending, or an antichain. Since the last possibility
is ruled out by hypothesis, one of the former two must apply, and the
play producing that sequence could not have been drawn. �

Observation 2. If D has a fixed-point-free order-preserving involution
then the second player can force at least a draw.

B’s strategy is to play the image of A’s move under the involution,
unless she has an immediate win available. Since no chain can involve
both a point and its image she thereby never plays a suicidal move,
that is one which makes it possible for Alexander to win the game on
his next turn, and hence she cannot lose.

Observation 3. If a = d and D has a fixed point free order reversing
involution i with the property that whenever x and xi are comparable,
one is minimal and the other maximal, then the second player can force
at least a draw.

Again the strategy for B is to play a winning move if one exists, and
otherwise the image of A’s previous move. The minimality/maximality
criterion guarantees that in the resulting sequence of plays no chain can
arise using both x and xi unless a = d = 2 which is trivially a second
player win.

This observation applies to play on the cube 2n or equivalently on the
lattice of subsets of a set. In particular it is easy to check that for
a = d = 3 play on 23 is a second player win though cooperatively the
two players can play to a draw.

Since D, a and d are fixed parameters of any particular game, all the
relevant information about a position is contained in its board. A board
which could arise in play may not have a proper prefix containing either
an ascending sequence of length a or a descending sequence of length d.
Subject to this condition we may define the type of a board to be one
of N , P or D. We say that the type is N (next) if the player whose
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turn it is to move (that is, the next player) has a winning strategy.
The type is P (previous) if the previous player (that is, the player who
is not next) has a winning strategy. Finally, the type is D (drawn) if
each player has a strategy that guarantees her or him at least a draw.

A board which contains the entire deck or which contains a critical
sequence is called a terminal board. A terminal board containing a
critical sequence is of type P in normal play and N in misère play,
while a terminal board that does not contain a critical sequence is of
type D. Otherwise, the type of a board, X, is determined by the set of
types of the boards that can be obtained in one further move. We call
these boards the children of X. If this set contains any board of type
P then the type of X is N . If all the boards in this set are of type N
then the type of X is P . Otherwise, the type of X is D.

These rules may not be immediately sufficient for determining the type
of an arbitrary board when arbitrarily long plays or even draws with
infinite play are possible. However, even in this case the boards are
partitioned into the three types above. The algorithm for perform-
ing the partitioning is to begin by labelling all the terminal boards
according to the winning conditions. Then inductively any currently
unlabelled boards which either have a child of type P , or all of whose
children have type N , are labelled appropriately. After completing this
induction, any boards remaining unlabelled are of type D.

Our principal goal will be to determine the type of the empty board –
that is, to determine whether the first player has a winning strategy,
or failing that, whether he can force a draw. We denote this type by
Wnor(a, d, D) for normal play, or Wmis(a, d, D) for misère play.

3. Double bumping

Given a sequence of distinct elements v = v1v2 · · · from a linearly
ordered set C there is a well known algorithm due to Schensted [9]
which determines (explicitly) the length of the longest increasing sub-
sequence of any prefix v1v2 · · · vk and (implicitly) the elements of such
a sequence. This is sometimes called the “bumping” algorithm. An
increasing sequence w = w1w2 · · ·wm is maintained as the elements
of v are processed in order. When vi is processed, w is modified as
follows: if wm < vi then vi is appended to w; otherwise vi bumps (that
is, replaces) the smallest element of w that is larger than vi.

It is easy to check that, after processing v1v2 · · · vk the element wj of w
is the least maximum element of an ascending subsequence of v1v2 · · · vk
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of length j. In particular, the length of w is equal to the length of the
longest ascending subsequence obtained to that time.

Of course there is a dual algorithm that allows one to keep track of the
length of the longest descending subsequence. In this version an ele-
ment is either prepended to the sequence being maintained (if smaller
than all the elements of the sequence), or it bumps the immediately
smaller element.

For the purposes of analysing some forms of the monotonic sequence
game it will be useful to be able to combine these two algorithms into a
single one. However, in doing so, we need to keep track of whether the
elements in the single ordered sequence which we are maintaining rep-
resent elements of the ascending or descending type – that is, whether
an element takes part in the sequence w of the original algorithm, the
corresponding sequence m in the dual algorithm, or both.

Initially we will do this by marking the elements with overlines (if they
belong to w), underlines (if they belong to m) or both (if both). Thus
we maintain a single marked sequence which we shall call the recording
sequence. The double bumping form of the combined algorithm can
then be described as follows.

• Initially set the recording sequence to be empty, and process
the elements of the permutation in order from left to right.

• Repeatedly, until the permutation is exhausted:
– insert the next element of the permutation into the record-

ing sequence with both an underline and an overline (main-
taining the increasing order of the recording sequence);

– delete the first overline if any to its right and the first
underline if any to its left;

– remove any naked elements (ones which no longer have an
underline or an overline).

For example, when we process the permutation 514263 in this way we
obtain:

5 → 15 → 145 → 1245 → 1246 → 12346

Frequently the precise identity of the elements of the recording se-
quences will not be important, but only their type (that is, what deco-
ration they have). This remark will be exactly true when we deal with
monotonic sequence games on Q, and is still of some relevance in the
case of monotonic sequence games on finite chains. For typographical
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purposes it is easier to record type sequences as colours rather than
bars, and so we will also call them colour sequences. Specifically we
associate the colour Blue with an underline, and Red with an overline.
Elements having both underlines and overlines will be called Purple.
An element is reddish if it is Red or Purple, and bluish if it is Blue or
Purple. The process of the double bumping algorithm on the permu-
tation above, purely in terms of colours is:

P → PB → RPB → RPBB → RPBP → RRPBB.

Of course the length of the colour sequence corresponding to a permu-
tation is not more than the length of the permutation itself. Different
permutations can easily have the same colour sequence (e.g. 231 and
213 both have colour sequence PP ) and indeed permutations of differ-
ent sizes can have the same colour sequence (e.g. 312 and 2143 both
have colour sequence RPB).

It is clear that only some sequences of colours can occur as a result of
applying the double bumping algorithm. We call such colour sequences
admissible. In terms of colour, when we add a new element, we insert
a Purple somewhere in the sequence and remove the red tinge from the
first reddish element to the right (deleting it entirely if it were Red) and
the blue tinge from the first bluish element to the left. In particular,
a colour sequence can never begin with Blue nor end with Red. In
fact we can completely characterise the admissible colour sequences.
Recall that a factor of a sequence is a subword consisting of a block of
consecutive elements from the sequence.

Proposition 4. The language of admissible colour sequences consists
precisely of the empty sequence, together with those sequences which
contain at least one P , do not begin with B nor end with R, and do
not contain RB as a factor.

Proof. Necessity is relatively straightforward. Each insertion leaves a
P so a non-empty admissible sequence must contain a P . Of the re-
maining conditions, the first two conditions are obviously preserved by
any legitimate insertion. To see that the final condition is preserved as
well consider an insertion which supposedly creates an RB factor. It
could not create both the R and the B since only an insertion between
those two elements could do that. Suppose, without loss of generality,
that the newly created element was the B. Then previously that el-
ement was represented by a P . But in order to eliminate its reddish
tinge, the insertion would have had to be after any preceding R, so we
could not get the RB factor as claimed.



MONOTONIC SEQUENCE GAMES 7

The proof of sufficiency is by induction. We show that if w is a non-
empty sequence of the form described, then there is some parent word
v also of the form described such that w can be obtained from v by
the bumping algorithm. That this suffices is based on the observation
that for any starting word u (admissible or not), after ad + 1 bumps
the resulting word must contain at least d + 1 bluish or a + 1 reddish
(red or purple elements). Thus the backwards chain of parents from w
is bounded in length by the product of the number of bluish elements
and the number of reddish elements in w, and can only terminate in
the empty sequence which is admissible.

If w = P the result is clear, so we may assume that the length of w is
at least two. Suppose first that w = Pu. If u = Bu′ let v = Pu′ (which
still has the form required) and note that v produces w by an insertion
on the left hand side. If u begins with a P or an R let v = Ru which
is admissible and produces w by an insertion on the left hand side.

Now suppose that w = RiPu with i > 0 and let w′ = Pu. Then
w′ is admissible, and by the case just proven we can find v′ which
produces w′ by an insertion into the first position. Let v = Riv′. Then
v produces w by insertion after the first block of R’s. �

The number of non-empty admissible words is enumerated by the se-
quence of alternate Fibonacci numbers:

1, 3, 8, 21, 55, 144, . . .

This is easily established by standard transfer matrix approaches or by
the observation that the association:

R → 01 B → 10 P → 00

almost provides a bijection between admissible colour sequences and
binary sequences of even length which contain no consecutive 1’s.

4. Finite chains

In this section we assume throughout that the deck is a finite chain
which, for convenience, we take to be:

[n] = {1, 2, . . . , n}

with the usual ordering. This was the basic situation investigated by
Harary, Sagan and West in [6]. On the theoretical front we have rel-
atively little to add to their results in this area, however, we have
extended their computational results considerably.
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Proposition 5. For fixed a and d both sequences Wnor(a, d, [n]) and
Wmis(a, d, [n]) for n = 1, 2, 3, . . . are eventually constant.

Proof. Since we know that a play of the game with parameters a and
d cannot last more than (a − 1)(d − 1) + 1 moves, the existence of a
winning strategy for either player, in either termination condition, can
be expressed as a first order sentence in the language of linear orders.
Consider, for example, the case of a first player win in normal play. In
this case this sentence begins with an existential quantifier, followed by
a long alternation of quantifiers representing the moves which might be
chosen by the two players. These quantifiers are followed by a quantifier
free formula expressing the condition “the first ascending sequence of
length a or descending sequence of length d arising in this play occurred
after a move made by the first player”. The other cases are all similar.

However, it is well known that the theory of finite linear orders admits
quantifier elimination (see [7], specifically sections 2.7 and A.6 and their
exercises). In particular, any sentence in this language is either true in
([n], <) for all sufficiently large n or false in ([n], <) for all sufficiently
large n. Since one of the statements “the game is of type N” and “the
game is of type P” must be true for every n > (a− 1)(d− 1), it must
be the case that the same one is true for all sufficiently large n. �

The proof above is a little unsatisfying from the standpoint of attempt-
ing to understand the structure of the monotonic sequence game played
with a finite deck. By essentially recreating the quantifier elimination
for the theory of finite linear orders but tailoring it to the situation
at hand we can make it somewhat more concrete. As a side-effect we
obtain improved bounds for the onset of the “long term behaviour” of
such games.

Specifically, consider boards that arise in the play of the monotonic se-
quence game. Suppose that the colour sequence at this point c1c2 · · · ck.
There is an associated sequence of gap lengths g0, g1, · · · gk where gi is
the number of cards remaining in the deck between the elements rep-
resenting ci−1 and ci. Note that this is not necessarily the same as the
difference between these elements minus one, as some of the interven-
ing elements may have been played earlier but no longer form part of
the colour sequence.

The basic idea of the argument is to divide gaps into two categories
large and small. All gaps whose length is larger than a certain number
(which may depend on the colour sequence and the position of the gap
relative to that sequence) will be considered large. We aim to show
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that if two boards have the same colour sequences and corresponding
gaps are either both large or both small and of equal length then we
can emulate the following play in one game within the other game and
vice versa. This Tweedledum-Tweedledee argument then establishes
that the two games have the same outcome type (and in fact the same
nim-value or Grundy number). The first part of the argument must
establish just what the bounds are for large gaps.

Imagine for the moment that the next play of the game will be a card
from the deck that lies in some particular gap. Among the values in the
board below this card there will be some maximal increasing sequence
whose length, r, is the number of reddish elements lying below the
gap. Likewise there is some maximal decreasing sequence on the board
whose length, b is the number of bluish elements lying above the gap.
Within this particular gap, the game will certainly end if we create
an increasing sequence of length a − r or a decreasing one of length
d − b. That is, within the gap we are essentially playing a game with
parameters a − r and d − b (the play within this gap may influence
plays in other gaps, but only by reducing their associated parameters).
Suppose that we temporarily let B(x, y) denote some value which is
“big enough” to define a large gap for parameters x and y. A play into
such a gap leaves two gaps, a lower one with parameters x and y − 1
and an upper one with parameters x− 1 and y. Since we must ensure
that we can match small gaps exactly and create corresponding large
gaps it will be sufficient to have:

B(x, y) ≥ B(x− 1, y) + B(x, y − 1) + 1.

If we choose equality and note that we may take B(x, 1) = B(1, y) = 1
then simple algebraic manipulation shows that we may choose:

B(x, y) = 2

(
x + y − 2

x− 1

)
− 1.

Henceforth we take this as the definition of B(x, y) and hence of what
constitutes a large gap.

Proposition 6. For fixed a and d, any two boards having the same
colour sequence with the property that corresponding gaps are either
both large, or otherwise equal have the same outcome type.

Proof. As promised, the proof is what is known as a “Tweedledum-
Tweedledee” argument (in the language of [1]) or a “back and forth”
argument (in the language of [7]). The idea is that any move made
in either position has one or more matching moves on the other posi-
tion which preserve the equality of colour sequences and corresponding
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gaps. Specifically, a move in a small gap is mirrored by the obvious
corresponding move of the other position. A move in a large gap leaves
either large gaps on either side or one small gap and one large gap. In
either case there is a corresponding move in the other position leaving
two large gaps, or one small gap (of the same size) and a large gap.

Suppose, for the sake of argument, that the first position has a second
player winning strategy. We devise a second player winning strategy
in the second position as follows. Given a move in the second game to
which we must reply, we consider a matching move in the first game.
Our strategy there will dictate a certain response to this move. We
make the matching response in the second game. Proceeding in this
way, we cannot fail to win in the second game (in fact we will win in
precisely the same number of moves as we win the matched sequence
of plays in the first game). All the other cases are very similar. �

In particular, any two games beginning with an empty board and hav-
ing decks of size 2

(
a+d−2

a−2

)
− 1 or larger must have the same outcome

type. As indicated by the computations below, this bound appears to
be somewhat extravagant, though not as much so as the näıve bound
arising from a direct translation of the quantifier elimination for the
theory of finite linear orders which would be 2(a−1)(d−1) − 1.

4.1. Computational results: normal play. We will assume through-
out that a ≥ d because the outcome type for parameters (a, d) is the
same as that for parameters (d, a). We begin by recapitulating results
from [6] recast into our notation.

If d = 2 then any move other than the smallest remaining element at
that time gives your opponent a “win in one”. So the outcome type is
determined by the parity of a and we have:

Wnor(a, 2, n) =

 D if n < a
N if a ≤ n is odd
P if a ≤ n is even.

For d = 3 then, depending on parity, the first player can choose to play
either the largest or second largest element of the deck as his first move.
This more or less reduces the game to the d = 2 case, and provided
that n > a and a is even, or n > a + 1 and a is odd Wnor(a, 3, n) = N ,
with the remaining cases being drawn.

Finally, [6] showed that Wnor(4, 4, n) = N for n ≥ 9. A winning strat-
egy is to play near the middle, and to ensure after your second move
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that all remaining moves must be the smallest or largest remaining
element.

We implemented a straightforward game tree traversal algorithm to
determine the outcome type of the empty board for various combina-
tions of the parameters (a, d, n). Although the observations made in
the proof of Proposition 6 could improve the efficiency of this algorithm
(by storage and re-use of previously computed outcomes for equal or
equivalent colour and gap sequences) such time improvement would
come at significant cost in space, and complexity of the underlying
code. Since we could extend the results of [6] considerably using just
the raw improvement in computing power between 1983 and now, we
did not choose to pursue these improvements. Our program permitted
computations with deck sizes up to 20 in a few minutes on a standard
desktop machine. Note that whenever a type P position is found, two
other positions are immediately known to be of type N , namely:

Wnor(a, d, n) = P ⇒
Wnor(a + 1, d, n + 1) = N and Wnor(a, d + 1, n + 1) = N

since the first player can reduce the game to the preceding case by
playing the smallest (respectively largest) element as his first move.

We give our new computational results in the following form: first
we specify the smallest non-drawn game of that type and its winner;
then a sequence of values until we (appear) to reach an eventually
constant block. Thus, the first line below means that for n ≤ 10
Wnor(5, 4, n) = D, and for 11 ≤ n ≤ 20 Wnor(5, 4, n) = N .

(5, 4, 11) ∈ N
(6, 4, 14), (6, 4, 15) ∈ P , (6, 4, 16) ∈ N

(5, 5, 15) ∈ N
(7, 4, 15), (7, 4, 16) ∈ N , (7, 4, 17) ∈ P , (7, 4, 18) ∈ N .

4.2. Computational results: misère play. We also computed re-
sults for misère play. In this case it appears to be true that the game
is drawn much less frequently, and so the data include some more in-
teresting observations. In this case, the table below lists the sequence
of outcome types for the various combinations of parameters a and d
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with n ranging from 1 through 20.

a d Misère winner
3 3 DDDNN NNNNN NNNNN NNNNN
4 3 DDDDP NNNNN NNNNN NNNNN
5 3 DDDDD NPPPN NNNNN NNNNN
6 3 DDDDD DDNNN NNNNN NNNNN
7 3 DDDDD DDDPN NNNNN NNNNN
8 3 DDDDD DDDDN PPNNN NNNNN
9 3 DDDDD DDDDD DNNNN NNNNN
4 4 DDDDD NPNNN NNNNN NNNNN
5 4 DDDDD DDNNN PNNNN NNNNN
6 4 DDDDD DDDDN PNPPN NNNNN
7 4 DDDDD DDDDN PNNNN NNNNN
8 4 DDDDD DDDDD DNNND NNNNP
9 4 DDDDD DDDDD DDDNP NPNND
5 5 DDDDD DDDDD DNPNP NNNNN
6 5 DDDDD DDDDD DNPNN NPNNN
7 5 DDDDD DDDDD DNDNP NPNNP

Most of the blocks of trailing N ’s do seem to represent long run behav-
iour. The evidence supporting this is that the smallest winning first
move is also constant across these blocks.

The a = 8, 9, d = 4 cases seem particularly interesting. First of all,
with a = 8 there is the interposed D at n = 15. Thus, with a 14 or
16 card deck the first player can force the second player to make an
ascending sequence of size 8 or a descending one of size 4 but with a 15
card deck he cannot! A further oddity of this sequence concerns the fact
that for a = 9, d = 4, the second player wins n = 15. This means that
the second player can force the first to create an ascending sequence of
length 9 or a descending one of length 4 in a 15 card deck, but can’t
force an ascending sequence of length 8 or a descending sequence of
length 4 in the same deck. Why can’t the first player simply follow an
“at least draw” strategy from the latter case to get the same result in
the former case? Because there is a hidden assumption in this strategy
– that the second player will never create an ascending sequence of
length 8 or a descending sequence of length 4 either.

4.3. Computation: further remarks. As noted above the program
used to obtain these results was exceedingly straightforward. Essen-
tially, every response to every move was examined from lowest to high-
est. Only when a response of type P was found (permitting the current
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board to be labelled as N ) was any pruning done. Likewise, no heuris-
tic choices of responses were considered. This alone would probably
improve the efficiency of the program considerably since it was ob-
served that in many cases if y was a good countermove to first move x
(and was quite different from x) then it was also a good countermove
to x + 1. Secondly, storage and re-use of previously computed results,
or some form of “orderly” generation based on Proposition 6 would
permit even more pruning. For example, the first three moves 10, 5, 20
and 10, 20, 5 result in identical colour sequences and gaps, so have the
same outcome type.

However, beyond some obvious observations and conjectures which we
propose in the final section, our opinion is that the data (particularly for
the misère version) suggest rather “noisy” behaviour for small values
of n. So, the benefits of pursuing these optimisations seems rather
limited.

5. Dense linear order

We now consider playing the monotonic sequence game with Q (or any
other dense linear order without endpoints) as the deck.

Proposition 7. For any a, d ≥ 1, Wnor(a, d, Q) = Wmis(a−1, d−1, Q).

Proof. In order to win the normal game, you cannot ever create an
ascending chain of length a−1 or a descending chain of length d−1 since
your opponent would then have the opportunity to win immediately.
Conversely, if your opponent creates such a sequence on the board then
you can win immediately. So the outcome of the misère (a−1, d−1, Q)
game is the same as that of the normal (a, d, Q). �

We note that the proposition above requires only that the deck not
have a maximal or minimal element. Owing to this proposition we
restrict our attention to the normal form of the game.

The outcome type of a particular board depends only on the relative
ordering among the elements currently on the board. This is clear,
since with two boards having the same relative ordering among their
elements, there is an order preserving bijection from Q to itself which
maps one board to the other. Any strategy which applies to the first
board, then also applies to the second by taking its image under this
bijection. However, in fact all that we need to know in order to de-
termine the outcome of a game is the colour sequence of the board.
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As noted previously, different boards and even boards of different sizes
can have the same colour sequence.

Proposition 8. For any a, d ≥ 1, and playing with Q as a deck, the
outcome type of a particular board is determined by the colour sequence
of that board.

Proof. First we observe that the colour sequence of the board is suffi-
cient to determine whether or not the game has ended since the length
of the longest ascending (descending) sequence on the board is equal
to the number of reddish (bluish) elements of its colour sequence.

Next we note that given the colour sequence of a board, the possible
colour sequences which can be obtained by making a single move are
determined. Any move involves the insertion of a P somewhere in
the existing colour sequence, and then “first higher red reduction” and
“first lower blue reduction”. Moreover, because the deck is dense, any
such insertion can be made.

So, in terms of determining the outcome, we need only know the colour
sequence of the current board, exactly as claimed. �

In considering the basic form of the monotonic sequence game with
parameters (a, d, Q) we will work almost exclusively with the colour
sequences. We define the children of a colour sequence to be all those
sequences that can be obtained from it in a single move. A colour
sequence is terminal if it contains a reddish, or d bluish elements.

As before, we will assume that a ≥ d and for a few values of d we
are able to determine the type of the general game with parameters
(a, d, Q).

Theorem 9. For d ≤ 5 the types of the monotonic sequence games
with parameters (a, d, Q) are as follows:

(1) For a ≥ 2, Wnor(a, 2, Q) = P.
(2) For a ≥ 3, Wnor(a, 3, Q) = N precisely when a is odd.
(3) For a ≥ 4, Wnor(a, 4, Q) = N .
(4) For a ≥ 5, Wnor(a, 5, Q) = N .

Proof. Throughout the argument we consider an equivalent version of
the monotonic sequence game with parameters (a, d, Q). In this ver-
sion, a suicidal move i.e. one which creates an ascending sequence of
length a − 1 or a descending sequence of length d − 1 on the board is
forbidden, unless forced. Since the player with a winning strategy in
the original game will never make a suicidal move, and the other player
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may choose not to so until forced, the outcome type of the modified
game is the same as that of the original.

For parameters (a, 2, Q) the game is truly trivial, since the very first
move is suicidal.

For the parameters (a, 3, Q), any move below an element already played
is suicidal. So, in the modified form, the two players alternately add
to an increasing sequence, and clearly the first player wins only if a is
odd.

Now consider parameter sequences of the form (a, 4, Q). We will show
that the set of colour sequences representing non-terminal P-positions
in this game is:

P4 = {P, Ra−3PB} ∪ {RiP 2 | 0 ≤ i ≤ a− 5}.

To establish this result we must show that for any position which can
arise in the play of (a, 4, Q), if it is not in P4 then it has a child which
is in P4 or a terminal position, and if it is in P4 then there is no such
child. The second part is easily checked.

Suppose that we have a colour sequence w which is not terminal and
not in P4. If it has three or more bluish elements, then it has a terminal
child. Suppose that w has exactly one bluish element. Then it is of the
form RiP for some 0 < i ≤ a−2. If i = a−2 it has a terminal child. If
i < a− 2 then an insertion just before the last R yields Ri−1P 2 which
is in P4 unless i = a − 3. In that case, inserting before the P yields
Ra−3PB.

Next consider the case where w has two bluish elements, both pur-
ple. Ignoring positions with terminal children, it must be of the form
RiPRjP where either j > 0 or i = a− 4. If j > 0 inserting before the
last R yields Ri+jP 2 while inserting before the last P yields Ri+j+1PB
and one of these two is in P4. If j = 0 and i = a − 4 then inserting
between the two P ’s yields Ra−3PB.

Finally consider the case of one purple and one blue element. Then w
is RiPB for some i. If i ≤ a − 5 then moving at the right hand end
produces RiP 2, while if i = a − 4, moving just after the P produces
Ra−3PB.

Thus for the parameters (a, 4, Q) we have established that P ∈ P and
hence the initial position is in N .

We give a similar argument for the parameter sequences of the form
(a, 5, Q). In this case though we do not provide an exhaustive listing
of the type P non-terminal colour sequences, but only a sufficient set
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of these. By this we mean that we provide a set P5 of colour sequences,
and an argument that the following conditions hold:

• P ∈ P5;
• if w ∈ P5 and v is a child of w, then v has a child which is either

terminal or in P5;
• no w ∈ P5 has a terminal child.

This establishes that P ∈ P , since from any position not in P5 the
player whose turn it is to move can simply take either the immediate
win, or the move guaranteed by the second of the conditions above.
We take

P5 = {P, RPB} ∪{
RiPRPB : 0 ≤ i ≤ a− 6

}
∪{

RiRPBP : 0 ≤ i ≤ a− 6
}
∪{

Ra−5P 3, Ra−3PB2
}

.

The first part of the verification is routine. From the initial position P
the second player can ensure that after her play, the resulting code will
be RPB by always replying “in the second position”. Likewise from
RPB she can always guarantee that her opponent’s next move will be
from one of PRPB or RPBP .

Now suppose that 0 ≤ i ≤ a− 7 and that a single move has been made
from RiPRPB or RiRPBP . If this move occurs below the first P it
creates a descent of length 4 and can be countered by an immediate
win (i.e. it is suicidal). In all of the remaining cases there is a counter
move to one of Ri+1PRPB or Ri+1RPBP .

If a single move has been made from Ra−6PRPB or Ra−6RPBP which
is non-suicidal, then again there are only a few positions near the end
of the colour sequence that need to be examined, and each of these
allows a response to either Ra−5P 3 or Ra−3PB2.

The final cases to consider are moves from Ra−5P 3. There are only two
non-suicidal moves and they both permit replies to Ra−3PB2.

�

We have strong experimental evidence that the monotonic sequence
game with parameters (a, d, Q) and a, d ≥ 4 always has type N . Com-
putation has established this result for 4 ≤ d ≤ 8 and any a with
d ≤ a ≤ 16. We can establish this result for the symmetrical form of
the game:
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Theorem 10. Let a ≥ 4. The monotonic sequence game with parame-
ters (a, a, Q) has type N .

Proof. The argument we provide uses a form of strategy stealing to-
gether with symmetry. That is, we show that if the second player had
a winning strategy then the first player could appropriate it for his own
use. This contradiction implies that it must be the first player who has
a winning strategy.

If the result were false then the type of the colour sequence P would
have to be N . As the moves from P to RP and PB are symmetrical
(under order reversal) both these positions would have to be of type
P .

In particular the two children PP and RPB of RP would both lie in
N . The children of PP are PBP , RPB and PRP . By assumption,
RPB ∈ N . By symmetry PBP and PRP have the same type, so
these two positions would have type P . The children of PRP and
PBP would all be of type N . These include the positions:

RPP, RRPB, RPB2, PPB.

However, these are all the children of RPB, so RPB must be of type
P , contradicting our assumption. �

Finally, for this section, we consider an extended form of the monotonic
sequence game when the deck is Q. In this extension, a chosen card can
be inserted anywhere in the board, in other words you are allowed to
choose the position as well as the value of the next element to insert in
the sequence. A useful model of this game is that the players alternately
choose points in the open unit square (or the plane, but using the
square saves paper) subject to the condition that no two chosen points
can lie on a vertical or horizontal line. The game ends when there
are either a points such that the segments connecting them all have
positive slope, or d such that the segments connecting them all have
negative slope. We refer to such sequences of points as increasing or
decreasing respectively.

This extra power reduces the analysis of the game to a simple parity
argument owing to the following lemma:

Lemma 11. Let a set of fewer than rs points in the open unit square be
given no two of which lie on a horizontal or vertical line. If the longest
increasing sequence of points has length at most r and the longest de-
creasing sequence of points has length at most s then it is possible to
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add an additional point without creating a sequence of r + 1 increasing
or s + 1 decreasing points.

Proof. View the points as a permutation. To avoid trivialities, sup-
pose that there is indeed an increasing subsequence of length r and a
decreasing subsequence of length s. Under these conditions, it is well
known that the permutation has a decomposition into s disjoint in-
creasing subsequences, I1 through Is, each of length at most r which
can be obtained by a simple greedy algorithm. Since the number of
elements of the permutation is less than rs, one of these subsequences,
without loss of generality I1, will contain at most r − 1 points. Now
consider a decomposition of the permutation into r disjoint decreasing
subsequences D1 through Dr each of length at most s (which can also
be obtained by a greedy algorithm). Since for each i and j, |Di∩Ij| ≤ 1
any of the Di of size s must intersect each Ij. However, some Di has
empty intersection with I1 (since there are r D’s and at most r − 1
points in I1). Without loss of generality, suppose it is D1 and note
that necessarily |D1| < s.

Now return to thinking of the elements of the permutation as points
in the square. It is possible to find a point (x, y) whose addition to
D1 forms a decreasing sequence, and whose addition to I1 forms an
increasing sequence. Such a point can be obtained by “connecting
the dots” for D1, and connecting the ends horizontally to the sides of
the square. Do likewise for I1 only connect the ends vertically. The
resulting two paths have a point P in common. Suppose that P lies
in a vertical or horizontal line determined by any of the finitely many
points in the set. In that case, it is possible to perturb P slightly,
so that this is no longer true and so that P ’s addition to D1 forms
a decreasing sequence, and its addition to I1 forms an increasing one,
without otherwise changing P ’s relative horizontal or vertical position
with respect to the elements of the set. The point P thus satisfies
the lemma since its addition still permits the partitioning of the set of
points into r decreasing sequences of size at most s, and s increasing
sequences of size at most r. �

In terms of the extended monotonic sequence game with parameters
(a, d, Q) the lemma above implies that for the first (a−2)(d−2) moves
neither player can be forced to play suicidally. However, at this point,
by the Erdős-Szekeres theorem the next move is necessarily suicidal.
Since the parity of ad is the same as that of (a− 2)(d− 2) we obtain:
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Theorem 12. The extended monotonic sequence game with parameters
(a, d, Q) has type N if ad is odd, and type P if ad is even.

6. Observations and open problems

It appears that the monotonic sequence game, particularly with normal
termination criteria, has a fairly strong bias towards the first player.
Specifically, our computational results suggest the following pair of
conjectures:

• For any a ≥ d ≥ 3 and all sufficiently large n, Wnor(a, d, n) =
Wmis(a, d, n) = N .

• For any a ≥ d ≥ 3, Wnor(a, d, Q) = N .

We would be surprised (assuming the correctness of these conjectures)
if similar results did not also hold for other infinite linear orders (not
models of the theory of almost all finite partial orders) such as N or Z.

In the finite form of the game it appears that the last D occurring in
the sequence Wmis(a, d, n) is generally closer to position a + d than to
position (a−1)(d−1). It would be of interest to determine a good upper
bound for the position of this last D (the same observation and question
applies to the sequence Wnor(a, d, n) though the computational evidence
is less compelling). Likewise, the “long run behaviour” of these games
seems to become established well before the bound obtained using the
argument of Proposition 6. That the trailing sequences of N ’s observed
in the computational results do generally represent long run behaviour
is supported by a more detailed examination of these positions showing
that there is a large central block of equivalent moves, which extends
by a single element each time the deck size is increased (extensions to
CGSuite [10] were used for some of these computations).

Another area of interest to investigate would be the behaviour of the ex-
tended form of the game played with a finite deck. In this form, players
take turn naming pairs (i, πi) subject to the constraint that the cho-
sen values form part of the graph of some permutation of {1, 2, . . . , n}
(and with termination based on increasing or decreasing sequences as
normally). An equivalent formulation has the players placing non-
attacking rooks on a (generalised) chessboard.
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[5] Paul Erdős and George Szekeres. A combinatorial problem in geometry. Com-
positio Mathematica, 2:464–470, 1935.

[6] Frank Harary, Bruce Sagan, and David West. Computer-aided analysis of
monotonic sequence games. Atti Accad. Peloritana Pericolanti Cl. Sci. Fis.
Mat. Natur., 61:67–78, 1983.

[7] Wilfrid Hodges. Model theory, volume 42 of Encyclopedia of Mathematics and
its Applications. Cambridge University Press, Cambridge, 1993.

[8] Bruce E. Sagan. The symmetric group, volume 203 of Graduate Texts in Math-
ematics. Springer-Verlag, New York, second edition, 2001. Representations,
combinatorial algorithms, and symmetric functions.

[9] C. Schensted. Longest increasing and decreasing subsequences. Canad. J.
Math., 13:179–191, 1961.

[10] Aaron Siegel. Combinatorial game suite. http://cgsuite.sourceforge.
net/.

Department of Computer Science, University of Otago

E-mail address: malbert@cs.otago.ac.nz

Department of Mathematics and Statistics, University of Otago

Department of Computer Science, University of Otago

Department of Computer Science, University of Otago

Department of Mathematics and Statistics, University of Otago

Department of Mathematics and Statistics, University of Otago

Department of Mathematics, Michigan State University

http://cgsuite.sourceforge.net/
http://cgsuite.sourceforge.net/

	1. Introduction
	2. The general framework
	3. Double bumping
	4. Finite chains
	4.1. Computational results: normal play
	4.2. Computational results: misère play
	4.3. Computation: further remarks

	5. Dense linear order
	6. Observations and open problems
	References

