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Convergecast, in which data from a set of sources is routed towards a data sink, is a critical
functionality for wireless networks deployed for industrial monitoring and control. We address
the joint link scheduling and channel hopping problem for convergecast in networks operating
according to the recent WirelessHART standard. For networks with line and balanced tree routing
topologies, we present jointly time- and channel-optimal scheduling policies taking into account
different packet buffering capabilities. For networks with general tree routing topology, we first
present time-optimal scheduling policies requiring only single-packet buffering. Then we establish
the lower bounds on the number of channels for time-optimal convergecast under different packet
buffering capabilities, and present a heuristic algorithm for time- and channel-optimal convergecast
scheduling. We further demonstrate that, given any fixed number of channels, our scheduling
policies are able to generate efficient schedules in terms of minimizing the convergecast time,
thereby enabling to explore the tradeoffs between the number of time slots and channels needed
to complete convergecast. Finally, we show how the results can be generalized to convergecast
problems with pure relay nodes and to support multiple scan rates. Simulation and experimental
results confirm that our schemes can provide very fast convergecast in WirelessHART networks.

Categories and Subject Descriptors: C.2.2 [Computer-communication networks]: Network
Protocols

General Terms: Design, Algorithms, Performance

Additional Key Words and Phrases: Convergecast, TDMA, multi-channel, link scheduling, Wire-
lessHART, channel hopping

1. INTRODUCTION

There is a strong current interest in migrating substantial parts of the tradition-
ally wired industrial infrastructure to wireless technologies to improve flexibility,
scalability, and efficiency. However, concerns about network latency, reliability and
security along with the lack of device interoperability have hampered the deploy-
ment rate. To address these concerns, WirelessHART [HARTCOMM 2007], the
first open and interoperable wireless communication standard especially designed
to address the needs of real-world industrial applications, has recently been ap-
proved and released. WirelessHART is designed to be an easy-to-use wireless mesh
networking protocol, leveraging on advanced techniques such as time diversity, fre-
quency diversity, path diversity and power diversity to achieve the level of reliability
and latency required to support advanced process monitoring and control applica-
tions [Gutierrez 2008].
Reliable real-time data delivery is instrumental to guarantee the performance

of closed-loop controllers. To this end, WirelessHART combines Time Division
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Multiple Access (TDMA) with per-transaction (packet+acknowledgement) chan-
nel hopping to control access to the network. TDMA enables deterministic com-
munications with predictable delays, whereas channel hopping provides frequency
diversity for avoiding interferers and reducing multi-path fading effects. Contrary
to the philosophy of decentralization advocated in wireless ad-hoc networks, the
WirelessHART standard “pushes” the complexity of ensuring reliable and expe-
dited data transfer to a centralized entity, the network manager, responsible for
constructing the global transmission schedule. Although the standard offers some
guidelines for transmission scheduling, designing optimal scheduling policies to meet
the stringent requirements of control applications still remains a major challenge.
Supervisory control with wireless technologies typically involves three phases: re-

trieving data from sensors to the gateway, computing the control actions (typically
in a computer with fast wired access to the gateway), and disseminating the control
commands from the gateway to actuators. Collecting data from multiple sources
to the gateway is a many-to-one communication paradigm with corresponding net-
working primitive called convergecast. In WirelessHART, the transmission schedule
is computed and optimized centrally at the network manager. After extracting the
subschedule for each field device, the network manager needs to disseminate the
subschedules to the corresponding devices. Within one control loop, the controller
may generate different control commands for different actuators. In [Pesonen et al.
2009], we show that multiple commands dissemination can also be performed by
reverse-convergecast (i.e., first generate the convergecast schedule from actuators
to the gateway, and then use the reverse schedule for commands dissemination).
Thus, efficient policies for convergecast scheduling are instrumental for industrial
control applications of WirelessHART technology.
Link scheduling for convergecast in multi-hop wireless sensor/ad-hoc networks

has been a topic of intense recent research. Most TDMA-based convergecast
schemes (e.g., [Upadhyayula et al. 2003; Tseng and Pan 2006; Song et al. 2007;
Gandham et al. 2008]) are based on single-channel communication, and focus on
making clever use of spatial-reuse to decrease convergecast latency. Only a few
studies consider multi-channel TDMA convergecast, see e.g. [Özlem Durmaz Incel
and Krishnamachari 2008; Wu et al. 2008], in which channels are initially (and
statically) assigned to link/nodes based on interference graph, and link scheduling
is performed in a separate stage. Since interference could potentially be removed
by scheduling interfering links on different time slots, these approaches may un-
derperform dynamic scheduling and channel hopping. Moreover, optimal channel
assignment is NP-hard in general [Wu et al. 2008; Özlem Durmaz Incel et al. 2008].
In this paper, we develop theory and algorithms for optimal convergecast schedul-
ing with per-transaction channel hopping in WirelessHART networks, aiming at
minimizing the convergecast latency while making economic use of the available
channels and the buffer space at nodes. To the best of our knowledge, there is no
existing work on convergecast scheduling taking into account these special features
of WirelessHART. Our main contributions are:

—For networks with line routing topology, we prove that the minimum time to com-
plete convergecast is 2N − 1 time slots where N is the number of field devices in
the network (Theorem 1), and the minimum number of channels required for this
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operation is �N/2�(Theorem 2) if each node can buffer only one packet at a time
slot. When the field devices are allowed to buffer multiple packets, the optimal
convergecast time remains the same while the number of required channels can be
reduced to �N −√

N(N − 1)/2�(Theorem 3). For both cases, we present jointly
time- and channel-optimal scheduling policies with time complexity O(N2).

—For networks with general tree routing topologies, we demonstrate that the mini-
mum convergecast time is max{2n1−1, N} slots, where n1 is the maximum num-
ber of field devices in a subtree (Theorem 4). We present time-optimal scheduling
policies with time complexity O(DN) where D is the depth of the tree and prove
that the optimal schedule needs at most D channels and requires only single-
packet buffering capability(Corollary 3 and Theorem 5). We also establish lower
bounds on the number of channels required for time-optimal convergecast under
different packet buffering capabilities(Theorem 7 and Theorem 8) and propose a
heuristic algorithm for jointly time- and channel-optimal convergecast scheduling.

—We investigate the tradeoff between the number of available channels and the
convergecast time, and demonstrate that our schemes can also be employed
to efficiently solve the channel-constrained time-optimal convergecast schedul-
ing problem in which the number of available channels is less than the lower
bound required for time-optimal convergecast (Corollary 4).

—We evaluate our schemes through both simulations and experiments on real hard-
ware. Experimental results show that our schemes can provide very fast converge-
cast operation in WirelessHART networks.

We would like to emphasize that this paper focuses on fundamental performance
limits and tradeoffs between convergecast latency, channel utilization, and buffer
requirements under the assumption of reliable link-level transmissions. Clearly,
these performance limits are also valid when links are unreliable (maintaining high
reliability will require longer latency, more parallel transmission, more buffer space,
or possibly all). Although we know how to compute and improve the reliability of
our schedules [Pesonen et al. 2009], reliability is not covered in this publication.
This paper is organized as follows. Section 2 briefly introduces WirelessHART,

and Section 3 presents our model and problem formulations. Section 4 and Sec-
tion 5 develop theory and algorithms for time- and channel-optimal convergecast
scheduling in networks with line and tree routing topologies, respectively. Section 6
discusses the channel-constrained time-optimal convergecast scheduling problem,
and Section 7 presents algorithm for sub-schedule extraction and channel hopping.
Section 8 discusses possible extensions and reviews related work. Section 9 shows
simulation and experimental results and Section 10 concludes the paper. For ease
of readability, the proofs of most theoretical results are collected in the Appendix.

2. A BRIEF OVERVIEW OF WIRELESSHART

WirelessHART is an extension of wired HART, a transaction-oriented communica-
tion protocol for process control applications. WirelessHART is a complete wire-
less mesh networking protocol supporting the full range of process monitoring and
control applications, including equipment and process monitoring, advanced diag-
nostics and closed-loop control. As illustrated in Figure 1, the basic elements of a
WirelessHART network include:
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Fig. 1. Example of wirelessHART network infrastructure.

—Field Devices connected to the process equipment. All field devices are able to
source, sink and forward packets on behalf of other devices in the network.

—Gateways enabling communication between host applications and field devices
that are members of the WirelesHART network.

—A Network Manager responsible for configuring the network, health monitor-
ing, managing routing tables and scheduling communication between devices.

WirelessHART networks may also include adapters for connecting to existing HART-
compatible devices and handhelds to configure, maintain or control plant assets.
In contrast to existing standards and protocols for wireless sensor/ad-hoc net-

works, WirelessHART has some special features described as below:
Network-wide time synchronization and TDMA: WirelessHART has sev-

eral mechanisms (e.g., pair-wise time synchronization) to promote network-wide
clock synchronization within 1ms accuracy – a capability not supported in many
other protocols. To meet the requirements for control applications, WirelessHART
uses TDMA technology to arbitrate and coordinate communications between net-
work devices. The standardized time slot length is 10ms.
Per-transaction channel hopping: WirelessHART supports per transaction

(packet+acknowledgement) channel hopping to provide frequency diversity, avoid-
ing external interferers and reducing multi-path effects. More details about per-
transaction channel hopping is given in Section 7.
Limited channel resources: WirelessHART operates based on radios com-

pliant with the IEEE 802.15.4-2006 physical layer standard, supporting only 16
physical channels in the 2.4 GHz ISM band. Channel blacklisting is employed to
avoid bad channels with consistently high interference levels (e.g., due to the co-
existence with 802.11). In practice, some channels may also be blacklisted to protect
wireless services that share a fixed portion of the ISM band with the WirelessHART
network. Thus the number of available channels for WirelessHART might be less
than 16. Hence efficient channel utilization is instrumental.
Centralized network management and scheduling: To guarantee timely

and reliable data delivery, routing topology and transmission schedule are centrally
computed at the network manager (which has global knowledge of the network
state), and then disseminated to all devices in the network.
Fore more details on WirelessHART, see e.g., [Kim et al. 2008; Gutierrez 2008].
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3. PROBLEM FORMULATION

We model a WirelessHART network as a graph G = (V,E) where the vertices in
V = {v0, v1,...,vN} represent the network devices and the edges in E denote the de-
vice pairs that can sustain reliable communication. There is only one gateway (GW)
denoted by v0 and N field devices v1...vN . Time is synchronized and slotted with
standardized length which allows transmitting one data packet and its associated
acknowledgement. Each device is equipped with a half-duplex radio transceiver,
implying that devices cannot transmit and receive at the same time slot. In our
model, we assume that all data transmissions are scheduled in dedicated time slots1,
and parallel transmissions in the same dedicated time slot are scheduled on different
channels. Based on this model, we investigate the fundamental performance limits
for convergecast operation in WirelessHART networks.
In the first stage of design and analysis, we use a simplified convergecast model in

which each field device initially generates exactly one packet destined to the GW,
and pre-loads the packet in its data queue before convergecast starts. In Section 8,
we will discuss how to extend the solutions to networks with multiple scan rates
and pure relay devices. The convergecast messages are routed along a spanning
tree rooted at the GW, denoted by T = (V,E′) with E′ ⊂ E. We refer to T as
the routing topology of the network, to stress that this could potentially be very
different from the actual physical placement of devices. For every device vi, fvi
denotes its parent and Cvi represents the set of its children in T . Let st(vi, vj)
denote the state of the directed link (vi, vj) ∈ E′ at time slot t with st(vi, vj) = 1 if
device vi transmits a packet to device vj at time slot t, and st(vi, vj) = 0 otherwise.
We use pt(vi) to denote the number of buffered packets in device vi at the end
of time slot t, and use LS to represent the length of the convergecast schedule S
(in time slots). The time-optimal convergecast scheduling problem, i.e. the
minimization of the convergecast schedule length, can then be formulated as follows:

minimize LS
subject to pLS (v0) = N (1a)∑

vj∈Cvi

st(vj , vi) + st(vi, fvi) ≤ 1 ∀vi ∈ V, ∀t ∈ [1,LS ] (1b)

pt(vi) = pt−1(vi) +
∑

vj∈Cvi

st(vj , vi)− st(vi, fvi) ∀vi ∈ V, ∀t ∈ [1,LS ] (1c)

st(vi, vj) ∈ {0, 1} ∀(vi, vj) ∈ E′, ∀t ∈ [1,LS ] (1d)

Constraint (1a) guarantees that the GW finally receives all packets. Constraint (1b)
restricts devices not to transmit and receive at the same time. Constraint (1c) is
the conservation of data packets. Constraint (1d) imposes constraint on link status.
As stated in Section 2, spectrum is a scarce resource which should be carefully

managed. The second problem to be addressed is the design of a jointly time-
and channel-optimal convergecast scheduling scheme with the objective to
minimize both the number of time slots and the number of channels required to

1In WirelessHART, shared slots can be allocated to multi-transmitters to handle retransmission.
We do not use shared slots as we assume reliable link-layer communication.
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complete convergecast. This problem is formulated as follows

minimize CS = max
t∈[1,LS ]

∑
(vi,vj)∈E′

st(vi, vj)

subject to LS solves Problem (1),

(2)

where CS is the number of channels (the maximum number of simultaneous trans-
missions) used in the schedule S.
As memory is a scarce resource for embedded devices, we consider both the cases

where (a) each device can only buffer a single packet at a time slot and (b) all
devices can buffer multiple packets.
In some scenarios, the number of channels available for convergecast might be

even less than the minimum number of channels obtained by solving Problem (2).
Hence another interesting problem is how to minimize the convergecast time with
a restricted number of channels, which we refer to as the channel-constrained
time-optimal convergecast scheduling problem and address it in Section 6.
The scheduling problems above are formulated as integer linear programs and

could, at least formally, be solved using optimization tools like MOSEK. However,
our experience in [Soldati et al. 2009] indicates that the running time to solve them
using ILP tools grows very rapidly and becomes impractical already for rather
small problem instances. In this paper, we demonstrate that, for a certain group
of routing topologies, the above problems can be solved in polynomial time.

4. LINE ROUTING TOPOLOGY

In this section, we focus on solving the convergecast scheduling problems for net-
works with a line routing topology. The solution for line topology is instrumental in
our developments for more general topologies, but is also interesting in its own right
since line is the preferred topology in certain applications such as pipeline monitor-
ing and unmanned offshore gas production [ENGINEERLIVE 2009; HARTCOMM
2009b]. Without loss of generality, the GW is placed at the right end of the line,
and the N field devices (v1...vN ) are placed from right to left, as shown in Figure 2.

GW
vN vN-1 v1v2v3v4 v0

Fig. 2. A network with line routing topology

4.1 Lower bound on convergecast schedule length LS
Theorem 1. The lower bound on the convergecast time LS in a network with

N field devices organized into a line routing topology is 2N − 1 time slots.

Proof. As shown in Figure 2, link (v2, v1) and link (v1, v0) can not be scheduled
simultaneously due to the half-duplex limitation. To complete convergecast, v1
needs N − 1 time slots to receive packets generated by the other devices, another
N − 1 time slots to forward these to the gateway, and yet another time slot to
forward its own packet. Thus, the lower bound on LS is 2(N − 1)+1 = 2N − 1.
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4.2 Scenario I: single-packet buffering capability

If each device can buffer at most one packet at any time slot, a device is eligible
to receive a packet if and only if it does not hold a packet. The following lemma
gives the sufficient and necessary conditions for time-optimal convergecast in a line
network with single-packet buffering constraint.

Lemma 1. Under single-packet buffering constraint, convergecast in a line net-
work can be completed in 2N − 1 time slots iff there is one packet scheduled to be
transmitted from v1 to the GW at every odd time slot t = 2k− 1, where k ∈ [1, N ].

Let Tx(vi) be the number of packets that device vi has transmitted since the start
of the convergecast operation. Based on Lemma 1, the time-optimal link schedule
for convergecast in a line network can be generated using the policy combining the
following two rules:

L1. Device v1 is scheduled to transmit at odd time slots t = 2k − 1, k ∈ [1, N ].

L2. If device vi−1 is scheduled for transmission at time slot t− 1, then device vi
is scheduled at time t unless vi has already forwarded all packets it should forward
(i.e., unless Tx(vi) = N − i+ 1).

The schedule is stored in a two-dimensional dynamic array Sch, where Sch[t][ch]
records the device scheduled for transmission at time slot t with channel offset ch.
The detailed algorithm to generate time-optimal convergecast schedule in networks
with line routing topology is given in Algorithm 1. Figure 3 shows an example of
the time-optimal schedule computed by Algorithm 1 in a 5-node line network.

Algorithm 1: Convergecast Line Single-packet Buffering

Input: T = (V,E′)
Output: Sch

1 begin
2 Tx(vi)← 0, ∀vi ∈ V ;
3 for t← 1 to 2N − 1 do
4 ch← 0;

/* Schedule device v1 (Policy L1); */
5 if t mod 2 = 1 then
6 Sch[t][ch]← v1; ch← ch+ 1;
7 Tx(v1)← Tx(v1) + 1;

/* Schedule other devices (Policy L2); */
8 for each device vi scheduled in slot t− 1 do
9 if (i+ 1 ≤ N) ∧ (Tx(vi+1) < N − (i+ 1) + 1) then

10 Sch[t][ch] ← vi+1; ch← ch+ 1;
11 Tx(vi+1)← Tx(vi+1) + 1;

Theorem 2. For line networks with single-packet buffering capability, the lower
bound on the number of channels to complete convergecast in 2N−1 slots is �N/2�.2

2Even though frequency reuse may allow to achieve the time bound by using only two channels if
each device only interfere with its adjacent neighbors in the line. However, in a real deployment,
the interference graph may be very different from the logical routing topology, thus making it
hard to fulfill.
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GW

Time Slot: 1 5 76432 8 9
v1v2v3v4v5 v0

v1 v1 v1v2v2v1v2 v2 v1

v4 v3v3v4v3

v5

Sch[t][1]

Sch[t][2]

Sch[t][3]

Fig. 3. Optimal schedule for a 5-node line network with single-packet buffering constraint.

Corollary 1. The schedule generated by Algorithm 1 is the only one that can
complete convergecast in a line network within 2N − 1 time slots under the single-
packet buffering constraint.

By Corollary 1 and Theorem 2, Algorithm 1 yields a time- and channel-optimal
schedule. By Theorem 2, the complexity of the for-loop (lines 8-11) in Algorithm 1
is O(N2 ). Thus, the time complexity of Algorithm 1 is O((2N − 1) · N2 ) = O(N2).

4.3 Scenario II: multi-packet buffering capability

If devices can buffer multiple packets, a transmitter does not need to wait until the
receiver has emptied its buffer before transmitting the new packet. This yields an
opportunity to reduce the number of channels required to complete convergecast in
the minimum time. An intuition for this opportunity can be seen in the example in
Figure 3. The optimal schedule with single-buffer constraint uses �N2 � = 3 channels
only once (in time slot 5), and schedules single transmission at slot 1 and slot 2.
By allowing v4 to buffer 2 packets, v5 may be scheduled for transmission in either
time slot 1 or 2, thus reducing the number of channels from 3 to 2.
In the following, we first solve Problem (2) by establishing the lower bound on

the number of channels required to complete convergecast in a line network within
2N−1 time slots for devices with unlimited buffering capability3. Then, we present
the algorithm to generate the optimal schedule for convergecast in a line network
in terms of minimizing both the number of time slots and the number of channels.

Theorem 3. Given any schedule S which can complete convergecast in 2N − 1
time slots in a line network with N field devices with unlimited buffering capability,
the lower bound on the number of channels used in S is �N −√

N(N − 1)/2�.
Theorem 3 gives the lower bound on the number of channels required to complete
convergecast in 2N − 1 time slots, but does not prove that the lower bound is
always achievable. We next design an algorithm and prove that it always generate
time- and channel-optimal schedule for convergecast in networks with line routing
topology, thereby demonstrating the tightness of this lower bound.
The basic idea is to allocate as many transmissions as possible at each time slot

to capitalize on the available channels. At each time slot t, the algorithm computes
the schedule in two steps: forward scheduling and backward scheduling.
In the forward scheduling step, the algorithm searches the eligible devices that

can be scheduled for transmission starting from v1 to vn. If device v1 has a packet

3In Section 9.2, we analyze the memory efficiency of our scheme and demonstrate that optimal
schedule can be generated with very small buffering capability.
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in its buffer (i.e., pt−1(v1) > 0), v1 is scheduled for transmission at this time slot.
For device vi (i > 1), if vi has a packet in its buffer (i.e., pt−1(vi) > 0) and device
vi−1 does not have a packet in its buffer, device vi is scheduled for transmission at
this time slot. Therefore, if a device has not finished forwarding all the packets it
should transmit and does not have a packet to transmit at the beginning of time
slot t, the device receives one packet at time slot t.

After the forward scheduling, the backward scheduling step is started if the
number of devices scheduled for transmission in the forward scheduling step is
less than the maximum transmissions that can be scheduled in this time slot(i.e.,
PTmax(t) defined in the proof of Theorem 3). Let end node be the farthest device
from the GW among all devices still holding packets. In this phase, the algorithm
searches devices eligible for transmission in the direction from end node to v1.
Let C�S = �N −√

N(N − 1)/2�. By Equation (13) and Theorem 1,

PTmax(t) =

{ C�S , t ∈ [1, 2N − 2(C�S − 1)];
� 2N−t

2 �, t ∈ (2N − 2(C�S − 1), 2N − 1].
(3)

The device vi that satisfies the following conditions is scheduled for transmission:

—The number of devices scheduled to transmit at time slot t is less than PTmax(t).

—Device vi is not scheduled in this time slot and device vi has a packet to transmit.
If i < N , device vi+1 is not scheduled for transmission in this time slot. If i > 1,
device vi−1 is not scheduled for transmission in this time slot.

The detailed algorithm to generate time- and channel-optimal convergecast sched-
ule in networks with line routing topology is given in Algorithm 2. Since both
forward and backward scheduling have time complexity O(N), the time complexity
of Algorithm 2 is O(N2). Figure 4 gives the time- and channel-optimal convergecast
schedule in a line network with 5 nodes.

GW

Time Slot: 1 5 76432 8 9
v1v2v3v4v5 v0

v1 v1 v1v2v2v1v2 v2 v1

v3v3v4v3v5

Sch[t][1]

Sch[t][2] v4

Fig. 4. Optimal schedule for a 5-node line network with multi-packet buffering capability.

Corollary 2. For a line network with N field devices and unlimited buffering
capabilities, the schedule generated by Algorithm 2 can always complete convergecast
in 2N − 1 time slots using �N −√

N(N − 1)/2� channels.
The forward and backward scheduling can not be easily combined together by
scanning the nodes only once due to the following reason: the forward scheduling
only needs to schedule necessary transmissions to guarantee that the GW receives
one packet in every odd time slot, and leaves as many channels as possible for the
second step, whereas the purpose of the backward scheduling is to move the packets
at the end of the line as close as possible to the GW, which needs to scan the nodes
from the end to the GW. Please refer to the proof of Corollary 2 for insights.
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Algorithm 2: ConvergeCast Line Multi-packet Buffering

Input: T = (V,E′); C�S
Output: Sch

1 begin
2 end node ← N ; p0(vi)← 1, ∀vi ∈ V − {v0}; p0(v0)← 0;
3 for t← 1 to 2N − 1 do
4 ch← 0;
5 Compute PTmax(t) based on Equation (3);

/* Forward Scheduling */
6 for j ← 1 to end node do
7 if j = 1 then
8 if pt−1(v1) > 0 then
9 Sch[t][ch] ← v1;ch← ch+ 1;

10 pt(v1)← pt−1(v1)− 1; pt(v0)← pt−1(v0) + 1;

11 else
12 if pt−1(vj) > 0 && pt−1(vj−1) = 0 && vj /∈ Sch[t] &&

ch < PTmax(t) then
13 Sch[t][ch] ← vj ; ch← ch+ 1;
14 pt(vj)← pt−1(vj)− 1; pt(vj−1)← pt−1(vj−1) + 1;
15 if pt(vj) = 0 && j = end node then
16 end node← j − 1;

/* Backward Scheduling */
17 j ← end node;
18 while ch < PTmax(t) && j > 0 do
19 if pt−1(vj) > 0 && (vj−1, vj , vj+1) /∈ Sch[t] then
20 Sch[t][ch] ← vj ; ch← ch+ 1;
21 pt(vj)← pt−1(vj)− 1; pt(vj−1)← pt−1(vj−1) + 1;

22 j ← j − 1;

5. TREE ROUTING TOPOLOGY

In this section, we investigate the convergecast scheduling problems for networks
with tree routing topology. Let D denote the depth of the routing tree. As shown
in Figure 5, Ts(vi) represents the whole subtree rooted at device vi and ni is the
number of field devices in Ts(vi). The GW has m children denoted by v1, v2... vm,
respectively. Without loss of generality, it is assumed that n1 ≥ n2 ≥ ... ≥ nm. For
convenience, we logically represent the network into levels so that all devices with
the same depth are located at the same level (the GW is at level 0).

GW

v1 v2 vm

v0
Ts(v1)

Level 0

Level 1

Level 2

Level D

Fig. 5. A network with general tree routing topology
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5.1 Lower bound on schedule length (LS)
Theorem 4. The lower bound on the number of time slots required to com-

plete convergecast in a network with tree routing topology and N field devices is
max{2n1 − 1, N}, where n1 is the number field devices in the largest subtree.

Proof. For any device vi, all packets in the subtree Ts(vi) must go through vi
to the GW. Hence, vi needs at least 2ni− 1 time slots to forward all the packets in
subtree Ts(vi). Since the GW can receive only one packet per time slot, at least N
time slots are needed to complete convergecast in a network with N field devices.
Thus the lower bound on the convergecast schedule length is max{2n1− 1, N}.
Theorem 4 shows that the structure of the routing tree plays a fundamental

role in minimizing the convergecast time, and quantifies how unbalanced the tree
can be while still admitting time-optimal convergecast. If no subtree has more
than 	(N + 1)/2
 nodes, convergecast can be completed in N time slots; otherwise
the largest subtree will dominate the achievable convergecast latency. Finding a
minimum spanning tree subject to cardinality constraints on the number of nodes
in any subtree is called the capacitated minimum spanning tree problem. Although
the problem is known to be NP-hard [Papadimitriou 1978], many effective heuristic
and approximation algorithms exist [Jothi and Raghavachari 2005].

5.2 Time-optimal convergecast scheduling

In general routing trees, devices can have very different number of children, and
hence very different traffic load to forward. It thus makes sense to give devices in
larger subtrees higher priority for transmission. The following rules constitute our
scheduling policy for time-optimal convergecast in tree networks:

T1. At each time slot t, device vi ∈ Cv0 is scheduled for transmission if subtree
Ts(vi) has the maximum number of packets left and device vi is not scheduled for
transmission at time slot t− 1.

T2. At each time slot t, device vi /∈ Cv0 is scheduled for transmission if the
following three conditions are fulfilled: (1) vi has not transmitted all the packets
it should transmit; (2) device fvi is scheduled to transmit at time t− 1; (3) Ts(vi)
has the largest number of packets left among all subtrees rooted at a child of fvi .

Let ϕt(vi) be the set of candidates that can be scheduled to transmit a packet
to device vi at time slot t. ϕt(vi) = {vj |vj ∈ Cvi ∧ Tx(vj) < nj ∧ vj /∈ Sch[t− 1]},
and device vj that satisfies the following condition is scheduled for transmission:

vj = arg max
vk∈ϕt(vi)

(nk − Tx(vk)).

If there are multiple devices with the same maximum number of packets left for
transmission, the one with the smallest index is given the highest priority. The de-
tailed algorithm for time-optimal convergecast scheduling is given in Algorithm 3.
Figure 6 shows the time-optimal schedule for a sample-tree network. The following
corollary proves that the schedule generated by Algorithm 3 can complete converge-
cast in a tree network using max{2n1−1, N} time slots with single-packet buffering
capability.
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Corollary 3. Given a network with arbitrary tree routing topology, Algorithm 3

yields a transmission schedule that completes convergecast in max{2n1−1, N} time
slots, requiring only single-packet buffering capability.

Algorithm 3: Convergecast Tree

Input: T = (V,E′)
Output: Sch

1 begin
2 ϕ1(vi)← Cvi , ∀vi ∈ V ;
3 Tx(vi)← 0,∀vi ∈ V ;
4 for t← 1 to max{2n1 − 1, N} do
5 ch← 0;

/* Schedule the children of the GW (Policy T1); */
6 if ϕt(v0) �= ∅ then
7 Sch[t][ch] = argmaxvk∈ϕt(v0)(nk − Tx(vk));
8 Tx(Sch[t][ch])← Tx(Sch[t][ch]) + 1; ch← ch+ 1;
9 ϕt+1(v0)← {vi|vi ∈ Cv0&&Tx(vi) < ni} − Sch[t][0];

/* Schedule for the other devices (Policy T2); */
10 for each device vi scheduled in slot t− 1 do
11 if (Cvi �= ∅) ∧ (Tx(vi) < ni) then
12 Sch[t][ch] ← argmaxvk∈ϕt(vi)(nk − Tx(vk));
13 ch← ch+ 1;
14 Tx(Sch[t][ch]) ← Tx(Sch[t][ch]) + 1;
15 ϕt+1(vi) = {vj |vj ∈ Cvi ∧ Tx(vj) < nj} − Sch[t][ch − 1];

9 1110

v8

GW

v1 v2

v4 v5 v7v6
Sch[t][1]: 

1 5 76432 8
v1 v1 v1v2v2v1v2 v2

Sch[t][2]: 

Time Slot: 

v0

v3

Sch[t][3]: v9 v10

v11

v3 v3 v3v6v5v3v5 v7

v2 v1v1

v8 v9v8v10

v11

v4

Sch[t][4]: 

Fig. 6. The time-optimal convergecast schedule for a sample-tree network.

Theorem 5. For any network with tree routing topology, the schedule generated
by Algorithm 3 completes convergecast using at most D channels, where D is the
depth of the tree.

It is important to notice that this bound does not depend on the number of nodes
in the tree (which can be arbitrarily large), but only on its depth. By Theorem 5,
the maximum number of devices that can be scheduled for transmission in one time
slot is D. Thus the time complexity of the embedded for-loop (Line 10 - Line 15)
is O(D), and the time complexity of Algorithm 3 is O(D ·max{2n1 − 1, N}).
ACM Transactions on Sensor Networks, Vol. x, No. xx, xx 20xx.
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5.3 A special tree: balanced complete m-ary tree

To confirm our intuition that the topology of the routing tree is critical, we will
demonstrate that Algorithm 3 generates jointly time- and channel-optimal schedules
for balanced complete m-ary trees. A balanced complete m-ary tree has m largest
subtrees with N/m nodes in each subtree. All leaf nodes are at the same depth
and each node (except the leaves) has exactly m children. In the special case
of m = 1, the m-ary tree collapses into a line topology which admits time- and
channel-optimal solutions as proved in Section 4. For m ≥ 2, the largest subtree
has 2N/m − 1 < N nodes, and by Theorem 4 the convergecast time bound in a
balanced complete m-ary tree is max{2N/m− 1, N} = N time slots.

Theorem 6. Given a balanced complete m-ary tree with depth D, the minimum
number of channels required to complete convergecast in N time slots is D.

By Theorem 5, Algorithm 3 generates a time-optimal convergecast schedule using
at most as many channels as the depth of the tree. This result, combined with The-
orem 6, demonstrates that Algorithm 3 yields time- and channel-optimal converge-
cast schedules in networks with balanced complete m-ary tree routing topology.

5.4 Analysis for time- and channel-optimal convergecast scheduling

In Algorithm 3, a device is scheduled for transmission as long as it has a packet
to transmit and its parent has empty buffer. This greedy policy is not efficient in
terms of channel utilization. For instance, the schedule in Figure 6 uses 4 channels
(i.e., 4 devices are scheduled at time slot 4) to complete convergecast in 11 time
slots. However, it is possible to fulfill the time bound with only 3 channels by
re-arranging the scheduling order to better utilize the time slots (e.g., slots 6, 8
and 9) in which only two devices are scheduled. We next establish lower bounds
on the number of channels required for time-optimal convergecast in networks with
general tree routing topology under different packet buffering capabilities.

5.4.1 Lower bound on CS with single-packet buffering capability

Theorem 7. For a network with tree routing topology, the number channels re-
quired to complete convergecast in L�

S = max{2n1 − 1, N} time slots under single-
packet buffering constraint satisfies:

CS ≥
⎡
⎢⎢⎢
(L�
S + 1)−

√
(L�
S + 1)2 − 4

∑D
d=1 d · n(d)

2

⎤
⎥⎥⎥ , (4)

where D is the depth of the tree and n(d) is the number of nodes with depth of d.

5.4.2 Lower bound on CS with unlimited buffering capability.
When devices can buffer multiple packets, a device can be scheduled for transmis-

sion as long as it has a packet to transmit and its parent has the buffering capability
to receive it. In this way, more devices can be scheduled at the first several time
slots, thereby reducing the number of channels required for convergecast.

Theorem 8. With multi-packet buffering capability at each field device, the num-
ber of channels CS required to complete convergecast in L�

S = max{2n1−1, N} time
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slots in a tree network satisfies:

CS ≥
⌈(2L�

S + 1)−
√
(2L�

S + 1)2 − 4
∑D

d=1 d · n(d)
2

⌉
, (5)

where D is the depth of the tree and n(d) is the number of nodes with depth of d.

Remark: It is worth noting that the lower bounds on the number of channels
for convergecast may not be always achievable. For instance, consider the exam-
ple in Figure 7 with a tree structure consisting of 5 lines with 6,2,1,1,1 devices,
respectively. By Theorem 7, at least CS=3 channels are required to complete con-
vergecast in max{2n1 − 1, N} = 11 time slots. The schedule in Figure 7 assigns
different colors to devices in different lines. By Corollary 1, the schedule for the
longest line in Figure 7 is the only schedule that can complete convergecast in 11
time slots with single-packet buffering constraint. Still, device v5 is not scheduled
for transmission, and the only available position in time slot 9 can not be assigned
to v5 since v1 is already scheduled to transmit to the GW. Thus, it is not feasible to
complete convergecast in 11 time slots with only 3 channels. This example further
confirms that the tightness of the channel bounds also depends on the structure of
the routing topology.

GW

Time Slot: 
Sch[t][1]:

1 5 76432 8 9

v1 v2 v3

v6 v7

v8

v11

v1 v1 v1v6v2v1v2 v3

v6 v9 v6v8v8v6v7

v8 v11v10v9

v1 v4

10

Sch[t][2]:

Sch[t][3]:

v1

11

v4 v5

v8

v10

v0

v9

v10 v9

v6

Fig. 7. An example to illustrate that the lower bound on the number of channels is not always
feasible. Devices in the same line are labeled with the same color.

5.5 Heuristic algorithm for time- and channel-optimal convergecast scheduling

We now consider the jointly time- and channel-optimal convergecast scheduling
problem for arbitrary tree routing topologies. Since we could not find a provably
optimal strategy, we propose a heuristic solution inspired by the optimal policies
for line topology, and evaluate its performance through extensive simulations.
Unlike the line routing topology, tree topologies may be very irregular with large

difference in the depth and size of individual subtrees. If the channel lower bound
CS computed with Theorem 7 or Theorem 8 is equal to the depth D of the routing
tree, then Algorithm 3 returns the time- and channel-optimal schedule according to
Theorem 5. However, if CS < D, the transmissions must be carefully scheduled to
achieve time optimality: for example, nodes with more packets to forward should
be given higher priority. To prioritize the transmissions, we introduce the definition
of latest release time as follows: for a packet generated by node vi, its latest release
time at any node vj in its routing path, denoted by ri,j , is the latest time slot in
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which node vj must be scheduled to transmit this packet in order to achieve the
lower bound on convergecast time. The basic idea of the heuristic scheduling is
to prioritize the nodes holding packets with the smaller latest release time. In the
following we first give the approach to compute ri,j , and then present the scheduling
algorithm.

5.5.1 Computation of the latest release time.
For any node vi, the latest time to release the packet generated by itself, i.e., ri,i,

can be computed in two steps as illustrated in Fig. 8: the first step initializes ri,i
for packets generated by leaf nodes, and the second step deals with non-leaf nodes.

v1 v2

GW

v3 v4 v5 v6

v8 v9 v10

v7

v11

v0

v7

11 11

10 8

9 7

8

10 8 6

9

v1 v2

GW

v3 v4 v5 v6

v8 v9 v10

v7

v11

v0

5 5

6 8

7 7

8

8 8 6

9

(a) Initialize packets generated by leaf nodes (b) Initialize packets generated by non-leaf nodes

Level 0

Level 1

Level 2

Level 3

Level 4

Fig. 8. Computation of latest release time for packets in the tree given in Figure 6. In a), starting
from the GW, both v1 and v2 get r′ = L�

S = 11. Scanning from v1, the child with maximum
descendants is v3 which gets r′(v3) = 10, while node v4 gets r4,4 = r′(v4) = r′(v3)− 2 = 8. The
procedure continues moving from v3 to the end of the subtree and is repeated for the subtree
rooted at v2. Case b) shows the computation for the non-leave nodes v8, v3, v5, v1 and v2.

Let r′(vi) denote the latest release time for the last packet forwarded by node vi,
and |Cvi | be the number of its children. For any device vi at Level 1, r

′(vi) = L�
S =

max{2n1− 1, N}. For any device vi ∈ V − {v0}, its children vj ∈ Cvi are sorted in
non-increasing order of the size of the subtrees they root, and stored in Cvi [1],. . . ,
Cvi [|Cvi |], respectively. Assume that the last packet forwarded by vi comes from
the child with the largest number of descendants. Then r′(Cvi [1]) = r′(vi)−1. The
remaining children get r′(Cvi [i]) = r′(Cvi [i−1])−2. This gives priority to transmit
the received packet before receiving a packet from another child, thus lowering the
buffering requirement at each node. If vi is a leaf node, ri,i = r′(vi). This step
is repeated until the packets generated by all leaf nodes have been processed, as
shown in Figure 8(a). Starting from depth D-1, the second step scans non-leaf node
vi bottom-up by setting ri,i = minvj∈Cvi

rj,j − 1, resulting in higher priority for
owned packet compared to packets from the children. Figure 8(b) illustrates this
step. It might occur that nodes at the same level (e.g., v8 and v9 in our example)
get the same latest release time. This ”conflict” is resolved in the scheduling step
by prioritizing the node with the largest number of packets left to transmit.
When a packet generated by vi is sent to its parent vj at time ri,i, the latest

release time to forward this packet from vj is ri,j = ri,i+1. Thus, whenever a node
vj forwards the packet generated by vi to its parent vk, ri,k is computed as follows:

ri,k = ri,j + 1. (6)

ACM Transactions on Sensor Networks, Vol. x, No. xx, xx 20xx.



16 ·
5.5.2 Scheduling algorithm.
Inspired by the time- and channel-optimal convergecast scheme in line networks,

we propose a heuristic algorithm for tree topology that computes the convergecast
schedule in two steps: connectivity keeping and priority-based scheduling.
The first step schedules transmissions to guarantee that the GW can receive packets
as continuously as possible, while the second step pushes packets forward from the
leaves towards the gateway to make full use of the available channels.
Similar to the forward scheduling step for line topology, the purpose of connec-

tivity keeping step is to guarantee that at each level devices are scheduled so that
packets can reach the GW timely. This is achieved by avoiding schedule holes :

Definition 1. At any time slot t in schedule S, level d ∈ [1, D] is called a
schedule hole if the following conditions hold:

(1 ) There is no packet in level d;

(2 ) In each level j ∈ [1, d), there is only one packet to be transmitted in slot t+ 1;

(3 ) There is at least one packet in a level k with k > d.

Once a schedule hole occurs, it can not be removed and results in a time slot
without transmission to the gateway, see Figure 9(b). According to Theorem 4, the
lower bound on convergecast schedule length is max{2n1 − 1, N}. Thus at most
max{2n1 − 1 −N, 0} schedule holes can be allowed for time optimality. Based on
this observation, at any time slot t, connectivity keeping is triggered if the number
of schedule holes in the schedule is no smaller than 2n1 − 1−N . The connectivity
keeping step is described by the example given in Figure 9(c). The algorithm seeks
schedule holes level by level, starting from level 1, and schedules devices as follows:

—At level 1, the packet with the minimum latest release time is scheduled.

—At level i > 1, if there is no packet that can be scheduled in slot t+1, the device
vi in level i+1 that satisfies the following conditions is scheduled for transmission:
(1) vi can be scheduled in slot t. (2) the packet at device vi has the minimum
latest release time among all packets that are eligible for transmission in slot t.

—If level i has more than one packet that can be scheduled for transmission at slot
t+ 1, the connectivity keeping step terminates.

—For each level, when multiple devices hold packets with the same minimum latest
release time, the device with the maximum packet left to transmit is prioritized.

v1 v3

GW

v4 v5 v7 v8

v9 v10

v2

v11

v6

v13v12 v14

0

1 0 0

0

v16 v17v15 v18

0 0 0 0

1 0 0 1 0 0

0 1 0 1
(a) (b) (c)

0

1 0 0

0 0 1 0 1

0 0 0 0 0 1

1 1 0 0

Fig. 9. (a) is a general tree network. In both (b) and (c), the digit 1 identifies a packet in the
corresponding device. In (b), level 2 is a schedule hole. In (c), device v1 and either v6 or v8 must
be scheduled to avoid schedule hole. If v6 is scheduled, either v15 or v16 must be scheduled.
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Similar to the backward scheduling in line networks, the basic idea of the priority-
based scheduling step is to maximize the number of transmissions after the con-
nectivity keeping step by prioritizing devices holding packets with smaller latest
release time. Let Qt be a priority queue storing the devices that can be scheduled
for transmission at time slot t. The devices in Qt are sorted in non-decreasing or-
der of latest release time for their packets. The priority-based scheduling works as
follows: if the number of devices that have been scheduled for transmission in time
slot t is less than PTmax(t) (defined in Equation (17)), the device vk that holds the
packet with the minimum latest release time is scheduled for transmission. This
procedure is repeated until either PTmax(t) devices have been scheduled for trans-
mission or Qt is empty. The detailed algorithm is given in Algorithm 4. Figure 10
gives the schedule generated by Algorithm 4 for the tree network in Figure 6. This
schedule completes convergecast in 11 time slots with only 3 channels.

Algorithm 4: ConvergeCast Tree Single Buffer

Input: T = (V,E′), C�S
Output: Sch

1 begin
2 Packet GW ← 0; t ← 0; Num holes ← 0;
3 Initialize td(vi), ∀vi ∈ V − {v0};
4 while Packet GW < N do
5 t ← t+ 1; ch← 0;
6 Generate Qt;
7 Compute PTmax(t) based on Equation (17);

/* connectivity keeping */
8 for i← 1 to D do
9 if Num holes < 2n1 − 1−N then

10 Num holes← Num holes+1;
11 break;

12 if level i is a schedule hole then
13 schedule device vi to avoid schedule hole;
14 td(vi)← td(vi) + 1; Sch[t][ch]← vi;
15 ch← ch+ 1; Qt ← Qt − {vi};
16 else
17 break;

18 if vi is in level 1 then
19 Packet GW ← Packet GW + 1;

/* Priority-based scheduling */

20 while ch < PTmax(t) and !Qt.empty do
21 vi ← Qt.GetF irst;
22 td(vi)← td(vi) + 1; Sch[t][ch]← vi;
23 ch← ch+ 1; Qt ← Qt − {vi}; vi ← Qt.GetNext;

Sch[t][1]: 

1 5 76432 8

v1 v1 v1v2v2v1v2 v2

v3 v3v3v5Sch[t][2]: 

Time Slot: 

v6

9 10 11

v1v1 v2

v10v11v8 v8

v5

v9

v3 v7 v4

Sch[t][3]: 

Fig. 10. Time- and channel-optimal schedule generated by Algorithm 4 for the network in Figure 6.
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6. CHANNEL-CONSTRAINED TIME-OPTIMAL CONVERGECAST SCHEDULING

Channels are scarce resource in WirelessHART, and it might occur that less than
C�S(the lower bound) channels are available for convergecast operation. Therefore,
understanding the tradeoffs between the number of available channels and the con-
vergecast time is instrumental. This trade-off is readily illustrated in Figure 11:
Region I is clearly infeasible, i.e., at least one channel is needed, and the network
cannot be evacuated in less than L�

S = max{2n1 − 1, N} time slots; Region II is
feasible but unattractive since the upper bound on the number of channels required
for time-optimal convergecast, denoted by CtS , is D (i.e., CtS = D), as claimed in
Theorem 5. In what follows, we characterize the optimal trade-off surface between
convergecast time and the number of available channels shown in Region III, and
provide scheduling policies capable to minimize the convergecast time for a given
number of channels CS < CtS . We have the following result:

0 L
S

C

1

C
S

C
S

Region I Region II Region III
* L

S
1 L

S

t

*

Fig. 11. Relation between the number of channels and the convergecast time.

Corollary 4. Given CS < CtS channels, the number of time slots required to
complete convergecast satisfies

(1 ) Line routing topology with single-packet buffering capability:

LS ≥
⌈N(N + 1)

2CS + 2CS − 2
⌉
. (7)

(2 ) Line routing topology with multi-packet buffering capability:

LS ≥
⌈N(N + 1)

2CS + CS − 1
⌉
. (8)

(3 ) Tree routing topology with single-packet buffering capability:

LS ≥
⌈∑D

d=1 d · n(d)
CS + CS − 1

⌉
. (9)
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(4 ) Tree routing topology with muliti-packet buffering capability:

LS ≥
⌈∑D

d=1 d · n(d)
CS +

CS
2
− 1

2

⌉
. (10)

The convergecast algorithms designed in the previous sections can be easily mod-
ified to solve the channel-constrained time-optimal convergecast problem by en-
forcing a fixed number of channels CS . For instance, Algorithm 2 uses C�S =

�N −√
N(N − 1)/2� channels to bound the maximum number of transmissions

scheduled per time slot. By setting the number of channels to CS < CtS , Algo-
rithm 2 can be used to compute channel-constrained schedules for networks with
line routing topology. Similarly, Algorithm 4 can be employed to solve this problem
for networks with tree routing topologies. In Section 9.3, we explore Region III by
comparing the schedule length obtained by our algorithms with the lower bounds
established in Corollary 4.

7. SUB-SCHEDULE EXTRACTION AND CHANNEL HOPPING

In WirelessHART networks, the network manager computes the convergecast sched-
ule, extract the sub-schedule for each device and send the sub-schedule to the device.
In the sub-schedule, each transmission is associated with a channel offset which rep-
resents the logical channel to be used. In wirelessHART, the logical channels can
be mapped to the physical channels as follows:

Activechannel = (channeloffset + ASN ) % Number of Active Channels, (11)

where ASN denotes the Absolute Slot Number which is the count of all slots that
have occurred since the network is formed.
At every time slot, each device can work in three states: Transmit (T), Receive

(R) and Sleep (S). Each field device stores the sub-schedule and channel hopping
sequence in a 2-dimensional array S sch[1,LS][1, 2], where S sch[t][1] records the
device state associated to slot t and S sch[t][2] records the channel offset used by
the field device at slot t. At any slot t, the state and channel offset for each device
vi can be generated as follows:

S1. If Sch[t][ch] = vi, vi works in Transmit state using channel with offset ch.

S2. If Sch[t][ch] ∈ Cvi , vi works in Receive state using channel with offset ch;
otherwise, vi remains in Sleep state.

The algorithm to generate the sub-schedule and channel hopping sequence for each
filed device vi is given in Algorithm 5. The time complexity of Algorithm 5 is
O(NCS) where CS is the number channels used. Figure 12 gives the sub-schedule
and channel hopping sequence for device v3 in the example given in Figure 6.

11Time Slot: 1 5 76432 8 9

S R RTTRT T S
1 2212

S_sch[t][1]:

S_sch[t][2]: 1 1
S

10

S

Fig. 12. Sub-schedule and channel hopping for device v3 in the example given in Figure 6.
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Algorithm 5: Sub-schedule and Channel Offset Generation(vi)

Input: Sch[1,LS][1, CS ]
Output: S sch[1,LS][1, 2]

1 begin
2 for t← 1 to LS do
3 for ch← 0 to CS − 1 do

/* Acting as Transmitter */
4 if Sch[t][ch] = vi then
5 S sch[t][1]← T ;
6 S sch[t][2]← ch;
7 /* Acting as Receiver */
8 else if Sch[t][ch] ∈ Cvi then
9 S sch[t][1]← R;

10 S sch[t][2]← ch;
11 /* Sleep */
12 else S sch[t][1]← S;

8. DISCUSSION

8.1 Advantages of channel hopping without frequency reuse

Per-transaction channel hopping without channel reuse can greatly simplify the
scheduling problems and enables to design scheduling policies with low-complexity
for control applications. First, the absence of multi-access interference allows to
design simple scheduling policies without constructing interference graphs due to
the difficulty in detecting interference and the time-varying interference pattern.
Moreover, channels are dynamically assigned during scheduling, avoiding prelimi-
nary optimal channel assignment which is NP-hard in general. Second, we proved
that the number of channels CS required for time-optimal convergecast in a network
with tree routing topology is bounded as C�

S ≤ CS ≤ D, where the upper bound D
coincides with the depth of the tree4, while the lower bound C�

S can depend on the
buffering capability and the structure of routing tree. Even when frequency reuse
is allowed, the upper bound on CS was proven to be �(G′) + 1, with �(G′) being
the maximum degree of the interference G′ constructed from the original topol-
ogy [Özlem Durmaz Incel et al. 2008]. Since control applications may require quite
dense deployments in a limited area, �(G′) will typically be much larger than D.
In the worst case, when the network is fully connected, �(G′) is equal to the total
number of field devices N , leaving no benefit for frequency reuse.
Even though per-transaction channel hopping without channel-reuse is preferred

in WirelessHART networks, we argue that our schemes can be easily extended
to allow channel reuse, given the knowledge of interference graph. Based on the
interference graph, the channel used by node vi for transmission in time slot t can be
assigned in the following way: Let ψi denote the set of feasible channels that can be
allocated to node vi for transmission in time slot t, and ψi is initialized as the set of
all active channels in the network. For each interfering node of vi, if it is scheduled
for transmission in time slot t, the channel allocated for this interfering node is

4Although this poses constraints on the depth of routing tree, in control applications it is recom-
mended to deploy networks with small depth D (typically 4-5 hops) due to the stringent delay
requirement [HARTCOMM 2009a].
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removed from ψi. If ψi is empty after all interfering nodes have been scanned, node
vi should not be scheduled in this time slot; otherwise node vi randomly chooses
one channel from ψi for transmission in time slot t.

8.2 Convergecast with pure relay nodes

In WirelessHART networks, some devices may join as pure relays, i.e., nodes that
do not generate traffic. Unlike the pure convergecast problem, the bound on con-
vergecast time in networks with pure relays not only depends on the number of
nodes in the network and the structure of the routing topology, but also depends
on the packet distribution and the precise ordering of relays-vs-sensor nodes. For
example, in a line network with N field devices, of which only one device holds
a packet, convergecast can take any time from one time slot (when the packet is
generated by the node closest to the gateway) to N time slots (when it is generated
at the node furthest away). Therefore, it is hard to get tight closed-form bounds
on convergecast time in networks with pure relay nodes.
Let g(vi) be the number of packets generated by node vi. If g(vi) = 0, node vi

is a pure relay node. Let h(vi) be the hop-count from node vi to the GW. The
following corollary gives a lower bound as well as an upper bound on convergecast
time in general tree networks with pure relay nodes.

Corollary 5. The minimum convergecast schedule length, denoted by L�
S , sat-

isfies:

L�
S ≥ max

{
maxvi∈V

(
2
∑

vj∈Ts(vi)
g(vj)− g(vi) + h(vi)− 1

)
,
∑

vi∈V g(vi)
}
;

L�
S ≤ maxi∈[1,m]

(∑
vj∈Ts(vi)

(h(vj)− 1) · g(vj)
)
+
∑

vi∈V g(vi).

The schemes designed for the classic convergecast problem can be easily modified
to generate efficient convergecast schedules for networks with pure relay nodes. For
instance, the policies presented in Section 5.2 can be modified as follows:

1. At each time slot t, device vi ∈ Cv0 is scheduled for transmission if device vi
has a packet to transmit and Ts(vi) has the maximum number of packets left.

2. At each time slot t, device vi /∈ Cv0 is scheduled for transmission if the follow-
ing three conditions are fulfilled: (1) vi has a packet to transmit; (2) device fvi is
not scheduled for transmission in this time slot; (3) Ts(vi) has the largest number
of packets left among all subtrees rooted at a child of fvi .

It can be seen that the above policies always give transmission priorities to nodes
with more packets to transmit and schedule as many transmissions as possible
in each time slot with the expectation to evacuate the packets in the network as
fast as possible. The solution for channel-constrained minimum convergecast time
scheduling can also be extended in a similar way.

8.3 Supporting multiple scan rates

In some applications, the scan rates of sensors in the same logical WirelessHART
network might be different. The WirelessHART standard recommends that mea-
surement scan rates are configured as integer multiples of the fastest scan rate, i.e.,
the supported scan rates are defined as 2n where n is positive or negative integer
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values, e.g., scan rate selections of 500ms, 1s, 2s and 4s [HARTCOMM 2007]. We
propose to address such situations by first generating the convergecast schedule for
each scan rate, and then merging them together starting with the fastest to the
slowest rate as the standard suggests. This policy is illustrated by the example in
Fig. 13.

v1 v2

v3 v4

GW

v1v5

80ms 80ms

40ms 80ms 40ms v2 v1
v4

v3 v1
v5 v2

v3 v1
v5 v2
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Ch
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80ms :

40ms :
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v3 v1
v5 v2

v1

(a) (b) (c)

Fig. 13. (a) the network containing devices with different scan rates (b) individual schedules for
different scan rates (c) the superframe after merging.

Although the above policy gives one solution that supports multiple scan rates,
it is most likely not optimal. However, the WirelessHART standard suggests to
leave at least 50% of the slots in the schedule empty for retries and listens. This
means that a well-provisioned network will be able to tolerate some suboptimality
in the merging phase. The development of more efficient merging policies that also
account for the allocation of free slots is a topic for future research, and left outside
of the scope of this paper.

8.4 Related work

Previous work on static and distributed link scheduling in radio networks includes [Ha-
jek and Sasaki 1988; Ramanathan and Lloyd 1992; Sekhar and Sivarajan 2000; Chen
et al. 2005; Cogill and Hindi 2007; Wan et al. 2009; Wan et al. 2009]. However, most
of these works consider saturated data sources and focus on average link rate per-
formance, thereby not applicable to deadline-constrained transmission scheduling
in WirelessHART.
Somewhat related is the literature on TDMA-based gossiping (see [Gasieniec

and Potapov 2002; Manne and Xin 2006; Huang et al. 2008; Huang et al. 2010]
and references therein). However, several distinct and significant features make the
gossiping algorithms not immediately suitable for convergecast in WirelessHART.
First, gossiping algorithms typically use protocol-based models in which channels
are spatially reused by nodes that are sufficiently separated (usually 3-hop). Al-
though it might be possible to extend some existing gossiping schemes for converge-
cast, much simpler convergecast schemes can be designed for WirelessHART due to
its special features. Second, the matching-like solutions used in gossiping problems
aim to activate as many non-colliding transmissions as possible, which requires
a large number of channels and memory for packet buffering, thereby becoming
disadvantageous even for small networks, see e.g., [Soldati et al. 2009].
Much work has been done on designing efficient TDMA-based convergecast proto-

cols for wireless sensor/ad-hoc networks. Choi et al. [Choi et al. 2005] proved that
the decision version of time-optimal convergecast scheduling problem for single-
channel wireless sensor networks is NP-complete in a weak sense. Tseng and
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Pan [Tseng and Pan 2006] studied the minimum delay beacon scheduling problem
for quick convergecast in ZigBee/IEEE 802.15.4 single-channel tree-based wireless
sensor networks and proved it to be NP-complete. However, we demonstrate that,
with multi-channel communication without frequency reuse, time-optimal converge-
cast scheduling can be solved in polynomial time given enough channels. A closely
related work by Gandham et al. [Gandham et al. 2008] focuses on designing dis-
tributed scheduling policies to minimize convergecast time in single-channel WSNs.
We employ the same methodology (i.e., first study line network and then for tree
network) in [Gandham et al. 2008] to study the convergecast scheduling problem
in WirelessHART. We present solutions for jointly time- and channel-optimal con-
vergecast scheduling, which can not be obtained by extending Gandham’s work.
Interference and multi-hop fading strongly degrade the performance of exist-

ing single-channel based schemes. A natural approach to avoid interference and
increase throughput is to use multiple channels. A Tree-based Multi-Channel Pro-
tocol (TMCP) for data collection was proposed in [Wu et al. 2008]. This scheme
allocates different channels to vertex-disjoint subtrees rooted at the gateway. Dur-
maz Incel and Krishnamachari in [Özlem Durmaz Incel et al. 2008] proved that the
receiver-based channel assignment problem in TDMA-based convergecast schedul-
ing with multi-channel communication and frequency reuse is NP-complete. Only
when the interference can be completely removed, their results recall our minimum
convergecast time. Still, the jointly time- and channel-optimality of the scheduling
problem, the channel-constrained time-optimality, as well as the memory efficiency
are not considered in [Özlem Durmaz Incel et al. 2008]. The time synchronized
mesh protocol [Pister and Doherty 2008], which defines the lower layers of the
WirelessHART standard, has been commercialized and successfully deployed on
several industrial sites by DUST networks. Impressive reliability and throughput
in actual industrial scenarios have been reported by DUST Networks, but there is
no public results on the efficiency of TSMP under delay constrained traffic, which
is the main theme of this work.
This paper extends our previous experience on real-time data delivery and time-

and channel-optimal convergecast scheduling for line routing topology, i.e., [Zhang
et al. 2009; Soldati et al. 2009], to networks with general tree routing topologies.
The proposed schemes are compliant with the special features of WirelessHART.

9. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our convergecast schemes through
both simulations and experiments on real hardware. Since the algorithms for line
routing topology and the algorithm for time-optimal convergecast in general tree
routing topology have already been proven to be optimal, we focus our evalua-
tions on the heuristic algorithm for jointly time- and channel-optimal convergecast
scheduling on arbitrary tree routing topologies. We also demonstrate the mem-
ory efficiency of our schemes and investigate the performance of Algorithm 2 and
Algorithm 4 applied to the channel-constrained time-optimal convergecast prob-
lem. Finally, we evaluate our schemes through simulations in COOJA simula-
tor [Österlind et al. 2006] and validate the simulation results on the Tmote Sky
platform [MOTEIV 2004] running the Contiki operating system [Dunkels 2009].
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9.1 Performance of the heuristic convergecast scheduling algorithm

To understand the performance of Algorithm 4, we apply it to the jointly time-
and channel-optimal convergecast scheduling problem on a large set of randomly
generated tree topologies. We then compare the length of the generated schedules
with the theoretical lower bound (although the bound is not always achievable) and
study the difference for various topology parameters.
To generate trees of varying depth with large variation in subtree size, we use

the following algorithm: First, M children are added to the GW; Then a random
number of children chosen with uniform distribution in [0,Δ] is added to any device
at depth d ∈ [1, D)5. In this set of simulations, D is varied from 1 to 10 and Δ
is varied from 1 to 3. For each setting of {M, D, Δ}, we generate 3000 trees.
Note that large values of D and Δ yield extremely large networks, which are very
rare in control applications due to the stringent requirements on communication
delay, thus of little relevance to the scope of this paper. For example, the setting
{M, D, Δ} = {3, 10, 3} generates trees with up to 88572 nodes (the balanced
complete 3-ary tree, cf. Equation (16)).
The topmost plots in Figures 14(a)-14(b) show the average deviation (in per-

cent) of actual convergecast schedule length from the lower bound, i.e., AvgDiff
=(LS − L�

S)/L�
S , where LS and L�

S are the convergecast schedule length achieved
by Algorithm 4 and the lower bound on convergecast schedule length, respectively.
For both Δ = 2 and Δ = 3, AvgDiff increases slightly with the increase of depth D
of the tree, but it always remains below 2.5%, demonstrating the near-optimality of
schedules generated by Algorithm 4. The lower plots in Figures 14(a)-14(b) show
the percentage of optimal schedules over the total number of runs. The results
show that the schedules are close to optimal, especially for moderate values of D
and large values of M . This phenomena is directly connected to the structure of
the routing tree: we observe that both large values of D and small values of M may
result in highly unbalanced tree topologies. For instance, with M = 3, one of the
branches may dominate the size of the routing tree, making the direct descendants
of the gateway bottlenecks for convergecast. Moreover, the more unbalanced the
routing tree, the higher the probability that the lower bound on the number of
channels might be not achievable (compare the example given in Figure 7). This
condition is alleviated with the increase of the number of children of the GW. When
M = 12, AvgDiff is less than 0.37% even for D = 10, and the percentage of optimal
schedules exceeds 97% for D ≤ 7. The reason for this is that when M increases, the
GW has more opportunities to receive packets alternately from different branches,
and the connectivity keeping step has more possibilities to avoid schedule holes.
Figure 14(c) plots the maximum deviation of convergecast schedule length from

the lower bound (in time slots) for Δ = 2 under different values of M and D.
Figure 14(d) shows the frequencies that the discrepancies occur. Although the
maximum difference goes up to 15 time slots when D = 10, Figure 14(a) shows
that this corresponds to less than 2.2% of the lower bound. Furthermore, the large
mismatches occur very rarely. For instance, the percentage of schedules demanding

5For large number of runs, this approach may enumerate all possible tree topologies with the same
setting {M, D, Δ}.
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(a) Average deviation from lower bound (� = 2) (b) Average deviation from lower bound (� = 3)
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Fig. 14. Performance of Algorithm 4 under different {M, D, Δ}.

more than 9 time slots than the lower bound is below 1.7% for all combinations of
{M, Δ, D} studied, and a mismatch of 15 time slots happens in less than 0.04%, of
the runs. Figure 14(e) plots the average percentage of packets received beyond the
lower bound on time. This figure is directly connected to Figure 14(b): both large
values of D and small values of M may result in highly unbalanced tree topologies,
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leading to larger AvgDiff and more packets received beyond the time lower bound.
However, when M = 12 and Δ = 3, it is less than 0.35% even for D = 10, and the
average percentage is below 2.1% for all combinations of {M, Δ, D} studied. All
of these demonstrate the near-optimality of Algorithm 4.

9.2 Memory Efficiency

Buffer space is scarce in wireless sensor nodes, and memory-efficiency of scheduling
policies is an important performance indicator. Algorithm 1, Algorithm 3 and Al-
gorithm 4 are clearly optimal in terms of memory utilization since each field device
is required to buffer at most one packet per time slot. However, the algorithms
for jointly time- and channel-optimal convergecast do not impose any restriction
on buffer space and could possibly be wasteful. In the following, we analyze the
memory efficiency of these algorithms, and study a slight variation where we im-
pose a constraint pt(vi) ≤ pmax on the number of packets that each node is allowed
to buffer. To account for limited buffer space, we make the following slight mod-
ification in our algorithms: at each slot, an eligible device can be scheduled for
transmission only if the buffer queue at the receiver is not full, i.e. pt(vi) < pmax.
We take the schedules generated by Algorithm 2 as examples for illustration6.
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Fig. 15. Memory utilization of the schedules generated by Algorithm 4.

Figure 15(a) shows how the buffer space restriction impacts the minimum number
of channels required to solve Problem (1) on a line topology with varying number
of nodes, and it also illustrates how the buffer constraint allows us to limit the
maximum buffer space to three packets without sacrificing channel (and time) op-
timality. For all cases except N = 26, our algorithm manages to find a time- and
channel-optimal schedule which only requires buffer space for two packets. Fig-
ure 15(b) shows the buffer space requirement on different nodes in a line with 32
nodes under different buffering restriction. Without buffering constraint, we can
see that the algorithm would require node 18 to have sufficient buffer space to hold

6For tree topologies, the buffer utilization may depend strongly on the network structure. Still,
the analysis for the line topology provides insights into the general sensitivity of buffer space on
channel efficiency.
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7 packets. The reason for this is that the backward scheduling step in Algorithm 2
pushes packets generated at the tail of the line to the middle in the first several
time slots, in an attempt to maximize the number of scheduled devices.

9.3 Performance of channel-constrained time-optimal convergecast scheduling

In Section 6, we introduced the channel-constrained time-optimal convergecast
problem and claimed that Algorithm 2 and Algorithm 4 can be applied to generate
good solutions in line and tree routing topologies, respectively. In what follows, we
validate our claims and compare the convergecast time achieved by these algorithms
against the time bounds established in Corollary 4.
Figure 16 exhibits the performance of Algorithm 2 for channel-constrained con-

vergecast scheduling in a line network with 9 devices. According to Theorem 2, for
single-packet buffering capability, Algorithm 2 yields a jointly time- and channel-
optimal convergecast schedule, here confirmed by Ct

S = C�
S = 5 in Figure 16(a). As
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Fig. 16. Performance of Algorithm 2 in a line network with 9 field devices.

the number of channels decreases, the convergecast time increases. Decreasing the
number of available channels from 5 to 1, Algorithm 2 achieves the lower bound
established in Corollary 4 in three cases, whereas it requires only one extra time
slot when CS equals 3 and 2, respectively. However, a manual inspection reveals
that the schedules for CS = 3 and 2 are also time-optimal since the lower bounds
from Corollary 4 are not achievable in these two cases. Figure 17 illustrates the case
for CS = 3 with the time bound of LS = 19 time slots. At most 45 transmissions
can be scheduled in 19 time slots with 3 channels, and exactly 45 transmissions
are required to complete convergecast in a line with 9 field devices. Thus the dark
region in Figure 17 should be completely filled in. However, only 2 devices can
be scheduled at time slot 15 since there are only two packets left in the network.
This can not be avoided with any other scheduling policies. Thus, the lower bound
in Corollary 4 is not achievable for CS = 3 and one extra time slot is needed to
complete convergecast. The same occurs for CS = 2.
The same analysis can be performed for the multi-packet buffering case in Fig-

ure 16(b). By Theorem 3, the channel bound for time-optimal convergecast is
C�S = 3. In this case, only when CS = 2 the schedule generated by Algorithm 2 uses
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Fig. 17. The schedule generated by Algorithm 2 when CS = 3.

one more time slot than the lower bound in Corollary 4. Comparing Figures 16(a)
and 16(b), we notice that multi-packet buffering capability allows shorter converge-
cast time in the channel-constrained problem. For instance, with CS = 3, converge-
cast requires 17 time slots in multi-packet buffering case compared to 19 (feasible
length) time slots in single-packet buffering case.
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Fig. 18. Performance of Algorithm 4 in a example-tree network.

We next employ Algorithm 4 to solve the channel-constraint convergecast schedul-
ing in tree topology using the sample network in Figure 18(a). As demonstrated in
Figure 18(b), the schedule generated by Algorithm 4 under single-packet buffering
constraint achieves the lower bound on convergecast time in all cases. The above
simulation results confirm the efficiency of our scheduling policies.

9.4 Experimental results

Finally, we report results from a real implementation of our scheduling policies in
the Contiki operating system using the Rime protocol stack [Dunkels et al. 2007] on
the Tmote Sky platform. We validate our implementations in extensive simulations
using the COOJA simulator and real-world experiments.
Our implementation relies on Contiki’s built-in time synchronization service with

hardware timers set to 16 kHz. The service is accurate enough to maintain synchro-
nized time slots of 10 ms length, as required in our experiments. We use a simplified
802.15.4 MAC packet format where the MAC Protocol Data Unit (MPDU) only
consists of application data payload (64 bytes in our experiments) and an additional
2-byte Frame Check Sequence (FCS) with CRC information. For each real experi-
ment, we verified that the convergecast schedule works by observing 10 consecutive
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convergecast rounds without lost radio packets (as stressed earlier, reliability mech-
anisms are outside the scope of this paper). The experimental results agree fully
with simulation results under ideal channel conditions.
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Fig. 19. Convergecast time vs. different routing topologies.

Figure 19(a) exhibits the convergecast latency in networks with line routing topol-
ogy by comparing the simulation/experiment results with the theoretical lower
bound. In both simulations and experiments, our scheme achieves the theoretical
lower bound on convergecast latency. It can be seen that collecting all packets
in a line with 10 devices takes less than 0.2s. Figure 19(b) shows the simulation
and experimental results for convergecast in networks with general tree routing
topology. The theoretical bound is also met in both simulations and experiments.
Figure 19(b) also shows how the structure of the routing topology affects the achiev-
able convergecast time, cf. Theorem 4: when one sub-tree dominates, more than
N time slots are needed to complete convergecast. Figure 20 gives the routing tree
used in our simulations for N = 15, where the dominant subtree rooted at v1 has
n1 = 9 field devices. Instead of 15 time slots, 2n1 − 1 = 2 × 9 − 1 = 17 time slots
are needed to complete convergecast with this routing tree. By replacing the link
(v10, v5) with (v10, v3), the largest subtree would remain with n1 = 6 devices and
convergecast could be completed in 15 time slots.
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Fig. 20. The routing tree topology used when N = 15.
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10. CONCLUSION

Convergecast is an important communication primitive for data collection in Wire-
lessHART networks. This paper studied the problem of optimal convergecast
scheduling, and we proposed jointly time- and channel-optimal scheduling policies
for convergecast in WirelessHART networks with both line and balanced complete
m-ary tree routing topologies. For general tree routing topology, we presented time-
optimal scheduling policies which can complete convergecast in max{2n1 − 1, N}
time slots, established lower bounds on the number of channels for time-optimal
convergecast, and proposed a heuristic algorithm to generate near-optimal con-
vergecast schedule in order to minimize both the number of time slots and the
number of channels. Moreover, we demonstrated that our algorithms can also be
employed to solve the channel-constrained time-optimal convergecast problem when
the number of available channels is less than the lower bound required for time-
optimal convergecast. Simulations and experiments on real hardware show that
our scheme can provide very fast and efficient convergecast in WirelessHART net-
works. We are currently studying optimal convergecast scheduling over unreliable
links, in an attempt to understand the fundamental limits of delay and reliability,
and develop efficient scheduling policies that make full use of time-, frequency- and
spatial diversity in WirelessHART networks.
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Appendix

Proof of Lemma 1.

′ →′: To complete convergecast, v1 must be scheduled to transmit in N time slots.
Due to the single-packet buffering constraint, v1 can not transmit in two consecutive
time slots. Thus, to complete convergecast in 2N − 1 time slots, v1 must transmit
a packet to the GW at any odd time slot t = 2k − 1, with k ∈ [1, N ].
′ ←′: If v1 transmits one packet to the GW at every odd slot t = 2k − 1 where
k ∈ [1, N ], obviously the total number of time slots for convergecast is 2N − 1.

Proof of Corollary 1.

Let S be the schedule returned by Algorithm 1. Given any schedule S ′ �= S, there
must be a time slot t with a device vi scheduled in S but not in S ′

:

—If i = 1, v1 does not transmit in all odd time slots. Hence by Lemma 1, schedule
S ′

can not be time-optimal.

—If i = 2, device v2 does not feed v1 with new packets at all even slots. Hence,
there will be an odd time slot in which v1 does not have a packet to transmit.
So schedule S ′

can not be time-optimal either.

—If i ≥ 3, device vi does not feed vi−1 with a new packet to transmit at slot t+1,
and device vi−1 will not feed vi−2 with a new packet to transmit at slot t + 2,
and so on. Suppose that the packet transmitted by device vi is forwarded to the
GW by v1 at an odd time slot t

′
in schedule S. Since the transmission for device
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vi is delayed in S ′
and the continuity is broken, v1 must do not have a packet to

transmit at odd time slot t
′
in S ′

. Thus schedule S ′
can not be time-optimal .

Proof of Theorem 2.

By Corollary 1, the schedule generated by Algorithm 1 is the only optimal schedule
that can complete convergecast in 2N − 1 time slots with single-packet buffering
constraint. The maximum number of parallel transmissions scheduled at a time
slot in this optimal schedule is N+1

2 if N is odd and N
2 if N is even. Since all

parallel transmissions must use different channels, the lower bound on the number
of channels required to complete convergecast in 2N − 1 time slots is �N2 �.
Proof of Theorem 3.

Let CS be the number of channels used in schedule S, and PTmax(t) denote the
maximum number of Parallel T ransmissions that can be scheduled in time slot
t ∈ [1,LS ]. As can be seen from Figure 4, to guarantee that convergecast can
be completed in LS time slots, only one device can be scheduled when t = LS or
t = LS−1, and at most two devices can be scheduled when t = LS−2 or t = LS−3,
and so on. Thus at most �LS−t+1

2 � devices can be scheduled for transmission in

time slot t. When t ∈ [1,LS − 2(CS − 1)], �LS−t+1
2 � ≥ CS . Since the maximum

number of channels can be used is CS , the maximum number of devices can be
scheduled in time slot t ∈ [1,LS − 2(CS − 1)] is CS . Hence,

PTmax(t) =

{ CS , if t ∈ [1,LS − 2(CS − 1)];
�LS−t+1

2 �, if t ∈ (LS − 2(CS − 1),LS ]. (13)

By Equation (13), the maximum number of transmissions that can be scheduled in
LS time slots using CS channels is thus

LS∑
t=1

PTmax(t) =
LS−2(CS−1)∑

t=1
CS +

LS∑
t=LS−2(CS−1)+1

⌈
LS−t+1

2

⌉
= −C2S + CS(LS + 1)

where we have used the fact that
∑LS

t=LS−2(CS−1)+1�LS−t+1
2 � = (CS − 1) + (CS −

1), ...,+2 + 2 + 1 + 1 = 2 · CS(CS−1)
2 = CS(CS − 1). Moreover, at least N(N + 1)/2

transmissions must be scheduled to complete convergecast, so

−C2S + (LS + 1) · CS ≥ N(N + 1)

2
. (14)

Replacing LS with 2N − 1, CS ≥ �N −√
N(N − 1)/2�.

Proof of Corollary 2.

By Equation (3), PTmax(t) ≤ C�S = �N −√
N(N − 1)/2� where t ∈ [1, 2N − 1].

Since the number of devices scheduled by Algorithm 2 at any time slot t is no more
than PTmax(t), the number of channels used does not exceed C�S . Since C�S is the
lower bound on the number of channels for time-optimal convergecast, the schedule
generated by Algorithm 2 uses exactly C�S channels.
Algorithm 2 schedules device v1 for transmission whenever it has a packet in its

buffer. By similar arguments as in Lemma 1, if convergecast can not be completed
in 2N − 1 time slots, there must be at least one odd slot in which device v1 is not
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scheduled. Let t′ denote the first odd slot with no transmission from v1 to the GW.
Since v1 is not scheduled at even slot t′−1 either, there must be two adjacent nodes
with no packet to transmit before t′. We refer to this condition as to a schedule
hole. To prove time-optimality of the schedule generated by Algorithm 2, it is only
needed to show that there are no schedule holes.
We logically split the line network into two parts: device vi is in Region A if

i ≤ 2C�S ; otherwise vi belongs to Region B. In forward scheduling step, a device can
be scheduled for transmission iff it has a packet and the buffer at its parent is empty.
Thus, in the first several time slots the forwarding scheduling step activates only a
few devices in Region A, and the remaining channels are used to move the packets
from Region B to Region A (see Figure 21). Since at most C�S devices in Region
A can be scheduled for transmission at any slot due to the half-duplex constraint,
the forward scheduling can always guarantee that there are no two adjacent devices
without packet to transmit in Region A if the packets in Region B can be fed into
Region A timely. Since backward scheduling is performed after forward scheduling,
a schedule hole can not be induced in backward scheduling step.

GW

Region B Region A

1

v1v2v3v4v5v6v7v8v9v10v11v12v13
111111111111

0111111202020
1011112111110
0101112120200
1010112211100
0101012212000
1010102221000
0101011221000
1010101230000
0101010230000

slot 1

1010101130000
0101010130000
1010101030000
0101010030000
1010100120000
0101001020000
1010010110000
0100101010000
1001010100000
0010101000000
0101010000000

slot 2
slot 3
slot 4
slot 5
slot 6
slot 7
slot 8
slot 9
slot 10
slot 11
slot 12
slot 13
slot 14
slot 15
slot 16
slot 17
slot 18
slot 19
slot 20
slot 21

link scheduled in forward scheduling step link scheduled in backward scheduling step

Fig. 21. Illustration of schedule hole.

Thus a schedule hole can be induced only at the boundary between two regions
if the remaining packets in Region B can not be transmitted to Region A due to
the lack of channels, as illustrated in the example in Figure 21 (To demonstrate the
generation of a schedule hole, the number of devices in Region A is set to 2(C�S − 1)
instead of 2C�S). Therefore, if a schedule hole is induced in Region A, the pattern
marked with light gray, in which there are exactly C�S devices in Region A holding
one packet each and placed at every second node starting from v1, must occur. Once
generated, the two adjacent zeroes, highlighted with red color in Figure 21, move
forward one hop at each slot until arriving at the GW, and can not be removed once
generated, resulting in no transmission for device v1 at an odd slot. To complete
the proof, we show by contradiction that Algorithm 2 never yields this pattern.
Suppose the pattern occurs in Algorithm 2 at time slot t. Let PB be the number

of packets in the devices located in Region B at the beginning of time slot t. Since
the number packets that the GW receives before time slot t is t−1

2 (t must be odd
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if this pattern occurs), PB = N − t−1
2 −C�S . In the best case all the PB packets are

in the buffers of device v2C�
S+1, and the minimum number of transmissions needed

to deliver the PB packets to the GW is PB(2C�S +1). For the C�S packets in Region
A, each device vj where j = 1, 3, 5, ..., 2C�S − 1 holds a packet, and j transmissions
are needed to transmit the packet at device vj to the GW. Thefore, the number of
transmissions needed to deliver the C�S packets to the GW is 1+3+5+, ...,+2C�S−1 =
C∗2. Since there is at least one packet still located in Region B, the number of
transmissions scheduled at any time slot t′ < t must be C�S . Hence, the minimum
number of transmissions required to complete convergecast is

PA(2C�S + 1) + C∗2 + C�S(t− 1) = (N − t−1
2 − C�S)(2C�S + 1) + C∗2 + C�S(t− 1);

= −C∗2 + 2NC�S + (N − t−1
2 − C�S).

As there is at least one packet in the devices located in Region B, N− t−1
2 −C�S > 0.

According to the proof of Theorem 3, the maximum number of transmissions that
can be scheduled in 2N − 1 time slots using C�S channels is −C∗2 + 2NC�S . If
this pattern happens, the lower bound on the number of channels established in
Theorem 3 is not correct. Therefore, this pattern never happens.

Proof of Corollary 3.

According to policy T2, a device vi /∈ Cv0 is scheduled for transmission at time slot
t only if its parent fvi has been scheduled at time slot t− 1. Thus each field device
needs to buffer at most one packet at any time slot.
Suppose that device vi is scheduled for transmission at time slot t. If vi has not

finished forwarding all the packets it should forward, the earliest time slot where
it can be re-scheduled is t + 2. An time t + 1, a child of device vi is scheduled to
transmit, which guarantees that vi has a packet in its buffer at the end of time slot
t+ 1. Thus, for any device vi scheduled at time t by Algorithm 3, vi must have a
packet to transmit at the beginning of time slot t. To prove that Algorithm 3 always
yields a time-optimal convergecast schedule, we need to prove that the transmissions
for the children of the GW can be scheduled in max{2n1 − 1, N} time slots.
Case: 2n1 − 1 > N
The lower bound for convergecast scheduling is 2n1 − 1 time slots. After time
slot t = 2k (1 ≤ k ≤ N − 1), the minimum number of packets left in the largest
subtree is n1 − t/2, and the maximum number of packets left in one of the other
subtrees is

∑m
i=2 ni − t/2. Since 2n1 − 1 >

∑m
i=1 ni (i.e., n1 >

∑m
i=2 ni + 1),

n1− t/2 >
∑m

i=2 ni− t/2, thus there must be a packet scheduled to be transmitted
to the GW from the largest subtree at time t = 2k + 1. Hence, convergecast in
the largest subtree can be done in 2n1 − 1 time slots. Since n1 − 1 >

∑m
i=2 ni, the

transmissions from other subtrees to the GW can be scheduled in the remaining
n1 − 1 time slots. Therefore, the schedule generated by Algorithm 3 completes
convegecast in 2n1 − 1 time slots.
Case: 2n1 − 1 ≤ N
The lower bound on the number of time slots for convergecast is N . Hence, there
must be a transmission from one child of the GW to the GW at any time slot t
(1 ≤ t ≤ N). Note that the first scheduling policy can always guarantee this.

Proof of Theorem 5.

At the first time slot, only device v1 is scheduled for transmission. At time slot 2,
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device v2 and a child of v1 are scheduled. The two devices are located at different
levels. Assume that the devices scheduled in time slot t are located in different
levels. Based on policy T2, a device can be scheduled for transmission at time
slot t + 1 only if its parent has been scheduled at time slot t. Thus the devices
scheduled in time slot t + 1 must be located in different levels. By induction, the
devices scheduled at any time slot are located in different levels. Thus the maximum
number of devices scheduled in a time slot is D for any tree network with depth D.
Since the devices scheduled at the same time slot must use different channels, the
schedule generated by Algorithm 3 uses at most D channels.

Proof of Theorem 6.

To deliver a packet from any device vi at depth d to the GW, d transmissions must
be scheduled. In a balanced complete m-ary tree, there are md nodes at depth d.
Hence the total number of transmissions required to complete convergecast is

D∑
d=1

d ·md = m−mD+1[1+D(1−m)]
(1−m)2 , (15)

and the number of nodes in the tree is

N =
D∑

d=1

md = mD+1−1
m−1 − 1 = mmD−1

m−1 . (16)

By Equations (15) and (16), the average number of transmissions scheduled per

time slot is 1
N

∑D
d=1 d ·md. Thus, at least � 1

N

∑D
d=1 d ·md� channels are needed to

fulfill convergecast in N time slots. To complete the proof, we show that D − 1 <
1
N

∑D
d=1 d ·md ≤ D. For any m > 1 and D > 1, 1

m−1 ≤ 1 and mD

mD−1 > 1. Hence

1
N

D∑
d=1

d ·md = D mD

mD−1
− 1

m−1 ≥ D mD

mD−1
− 1 > D − 1.

Consider the difference between
∑D

d=1 d·md

N andD, 1
N

D∑
d=1

d·md−D = (mD−mD)+(1−D)
(mD−1)(m−1) .

For any m > 1 and D > 1, mD −mD ≤ 0, 1 −D ≤ 0 and (mD − 1)(m − 1) > 0.

Thus
∑D

d=1 d·md

N −D ≤ 0, i.e.,
∑D

d=1 d·md

N ≤ D.

Proof of Theorem 7.

As shown in Figure 6, due to single-packet buffering constraint, the maximum
number of transmissions scheduled at time slot t, denoted by PTmax(t), is t. To
complete convergecast in L�

S time slots, at most one device can be scheduled in
time slot L�

S , and at most two devices can be scheduled at time slot L�
S − 1 and so

on. Thus PTmax(t) should be no larger than L�
S − t+ 1 which is equal to CS when

t = L�
S − CS + 1. When t ∈ [CS + 1,L�

S − CS ], the number of devices eligible to
be scheduled might be larger than CS . However, the maximum number of channels
can be used is CS . Thus PTmax(t) = CS when t ∈ [CS + 1,L�

S − CS ]. Hence

PTmax(t) =

⎧⎨
⎩

t, if t ∈ [1, CS ];
CS , if t ∈ [CS + 1,L�

S − CS ];
L�
S − t+ 1, if t ∈ [L�

S − CS + 1,L�
S ].

(17)
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By Equation (17), the maximum number of transmissions that can be scheduled in
L�
S time slots using CS channels is thus

L�
S∑

t=1
PTmax(t) =

CS∑
t=1

t+
L�

S−CS∑
t=CS+1

CS +
L�

S∑
t=L�

S−CS+1

(L�
S − t+ 1) = −C2S + (L�

S + 1)CS ,

where
∑CS

t=1 t =
∑L�

S
t=L�

S−CS+1(L�
S − t+ 1) = (CS+1)CS

2 . Moreover, at least
∑D

d=1 d ·
n(d) transmissions are required to complete convergecast, thus

−C2S + (L�
S + 1)CS ≥

D∑
d=1

d · n(d). (18)

Rearranging terms, we find that CS ≥
⌈
(L�

S+1)−
√

(L�
S+1)2−4

∑D
d=1 d·n(d)

2

⌉
.

Proof of Theorem 8.

Different from the case of single-packet buffering, up to CS devices can be scheduled
at time slot t ∈ [1, CS ] because of the multi-packet buffering capability. Thus

PTmax(t) =

{ CS , if t ∈ [1,LS − CS ];
LS − t+ 1, if t ∈ (LS − CS ,LS ]. (19)

The maximum number of transmissions that can be scheduled within LS time slots
with CS channels is

LS∑
t=1

PTmax(t) = (LS − CS)CS +
LS∑

t=LS−CS+1

(LS − t+ 1) =
−C2

S
2 + (LS + 1

2 )CS .

Similar to the proof of Theorem 7,

−C2
S

2 + (LS + 1
2 )CS ≥

D∑
d=1

d · n(d). (20)

By arranging terms, we get CS ≥
⌈
(2LS+1)−

√
(2LS+1)2−4

∑
D
d=1 d·n(d)

2

⌉
.

Proof of Corollary 4.

Case (1): The proof is the same as the proof for Theorem 3 except the definition
of PTmax(t). As can be seen from Figure 3, due to the single-packet buffering con-
straint, at most � t2� can be scheduled at time slot t. To guarantee that convergecast

can be completed in LS time slots, at most �LS−t+1
2 � devices can be scheduled for

transmission in time slot t. Since the maximum number of channels can be used is
CS ,

PTmax(t) =

⎧⎨
⎩
� t2�, if t ∈ [1, 2(CS − 1)];
CS , if t ∈ (2(CS − 1),LS − 2(CS − 1)];
�LS−t+1

2 �, if t ∈ (LS − 2(CS − 1),LS ].
(21)

The maximum number of transmissions that can be scheduled in LS time slots
using CS channels is

2(CS−1)∑
t=1

PTmax(t) =

LS−2(CS−1)∑
t=1

� t
2
�+ [LS − 4(CS − 1)]CS +

LS∑
t=LS−2(CS−1)+1

⌈LS − t+ 1

2

⌉

= −2C2S + (LS + 2) · CS .
ACM Transactions on Sensor Networks, Vol. x, No. xx, xx 20xx.



36 ·
Similar to the proof of Theorem 3,

−2C2S + (LS + 2) · CS ≥ N(N + 1)

2
. (22)

Thus LS ≥
⌈
N(N+1)

2CS + 2CS − 2
⌉
.

Cases (2),(3) and (4): The lower bounds given in cases b), c) and d) can be
easily obtained based on Equation (14), Equation (18) and Equation (20).

Proof of Corollary 5.

For any node vi, it needs at least
∑

vj∈Ts(vi)/vi
g(vj) time slots to receive the packets

generated by other nodes in subtree Ts(vi), and needs at least
∑

vj∈Ts(vi)
g(vj) time

slots to transmit the received packets together with the packets generated by itself
to its parent. Thus the earliest time slot in which node vi can finish transmitting
all packets is t =

∑
vj∈Ts(vi)/vi

g(vj)+
∑

vj∈Ts(vi)
g(vj) = 2

∑
vj∈Ts(vi)

g(vj)−g(vi).
At the end of time slot t, there must be at least one packet at the parent of
vi, which needs another h(vi) − 1 time slots to reach the GW. Therefore, the
minimum number of time slots required to deliver all packets in subtree Ts(vi) is
2
∑

vj∈Ts(vi)
g(vj)−g(vi)+h(vi)−1. Since L�

S should be no smaller than the number

of packets in the network, L�
S ≥ max

{
maxvi∈V

(
2
∑

vj∈Ts(vi)
g(vj)−g(vi)+h(vi)−

1
)
,
∑

vi∈V g(vi)
}
.

The packets in any subtree Ts(vi) can be delivered to node vi in
∑

vj∈Ts(vi)
(h(vj)−

1)·g(vj) time slots by scheduling only one node at any time slot. Thus the packets in

the network can be delivered to the children of the GW in maxi∈[1,m]

(∑
vj∈Ts(vi)

(h(vj)−
1)·g(vj)

)
. Hence L�

S ≤ maxi∈[1,m]

(∑
vj∈Ts(vi)

(h(vj)−1)·g(vj)
)
+
∑

vi∈V g(vi).
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Özlem Durmaz Incel, Ghosh, A., Krishnamachari, B., and Chintalapudi, K. K. 2008. Multi-
channel scheduling for fast convergecast in wireless sensor networks. Tech. rep., Department of
Computer Science, University of Twente.
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