Transparent Data Selection and Regional
Locality in Distributed Shared Memory

Zhiyi Huangf, Chengzheng Suni, Abdul Sattar}, and Ian McDonaldf}

tDept of Computer Science
University of Otago, Dunedin, New Zealand
Email:{hzy,jrm}Qcs.otago.ac.nz
1School of Computing & Information Technology
Griffith University, Brisbane, Qld 4111, Australia
Email:{scz,sattar}Qcit.gu.edu.au

Abstract. This paper discusses transparent Data Selection achieved by
ezploring Regional Locality in Distributed Shared Memory (DSM). Data
Selection means processors propagate to each other only these shared data
objects which are really shared among them. Regional Locality is the
program behaviour in which a set of addresses that are accessed in one
critical or non-critical region will be very likely accessed as a whole in
the same critical region or other non-critical regions. Three update prop-
agation protocols based on Regional Locality are discussed in terms of
achieving transparent Data Selection in Distributed Shared Memory sys-
tems. These protocols include: Selective Lazy/Eager Update Propagation
protocol, First Hit Update Propagation protocol, and Second Hit Update
Propagation protocol. Our experimental results indicate that these proto-
cols can achieve transparent Data Selection for many Distributed Shared
Memory concurrent programs. We have also shown that the proposed
protocols outperform the existing update propagation protocols based on
temporal locality. Implementing transparent Data Selection at both run-
time and compile-time would be an interesting future research direction.

Key Words: Distributed Shared Memory, Data Selection, Regional Lo-
cality
1 Introduction

Many weaker sequential consistency models [4,6,2,10,9] have been proposed
in Distributed Shared Memory (DSM) systems. The goal of these models is

Proceedings of the Twenty Second Australasian Computer Science Con-
ference, Auckland, New Zealand, January 18—-21 1999. Copyright Springer-
Verlag, Singapore. Permission to copy this work for personal or classroom
use is granted without fee provided that: copies are not made or distributed
for profit or personal advantage; and this copyright notice, the title of the
publication, and its date appear. Any other use or copying of this document
requires specific prior permission from Springer-Verlag.

to achieve Sequential Consistency (SC) [11] on networks of workstations as effi-
ciently and conveniently as possible. These models can take advantage of explicit
synchronisation primitives, e.g., acquire, release, and barrier, to achieve time se-
lection, processor selection, and data selection [13].

To explain the above three selection techniques, we consider a DSM system
with four processors P;, P», P3, and P, where P;, P>, and P; share a data ob-
ject ¢, and P; and Py share a data object y. Suppose all memory accesses to the
shared data objects x and y are serialised among competing processors by means
of synchronisation operations to avoid data races. Under these circumstances,
the following selection techniques can be used: (1) Time selection: Updates
on a shared data object by one processor are made visible to the public only at
the time when the data object is to be read by other processors. For example,
updates on x by P; may be propagated outward only at the time when either P,
or P; is about to read z. (2) Processor selection: Updates on a shared data
object are propagated from one processor to only one other processor which is
the next one in sequence to read the shared data object. For example, updates
on z by P; may be propagated to only P, (but not to P;) if P, is the next
one in sequence to read z. (3) Data selection: Processors propagate to each
other only these shared data objects which are really shared among them. For
example, P;, P>, and P; may propagate to each other only data object z (not y),
and P; and P, propagate to each other only data object y (not z). To improve
the performance of the strict SC model, a number of weaker SC models have
been proposed, such as Weak Consistency (WC) [4], Eager Release Consistency
(ERC) [6], Lazy Release Consistency (LRC) [10], Entry Consistency (EC) [2],
and Scope Consistency (ScC) [9]. They perform one or more of the above three
selection techniques while appearing to be sequentially consistent. We call these
weaker SC models selective SC models. Table 1 summarises the selection tech-
niques used by these selective SC models.

Model TS PS DS
SC No No No
WC |Sync. time No No
ERC | Rel. time No No
LRC | Acq. time |Next proc. No

EC | Acq. time |Next proc.| Lock-data assoc.
(user-annotation)
ScC | Acq. time [Next proc.|Scope-data assoc.
(user-annotation)

Table 1. Selection techniques used in existing selective SC models

All existing selective SC models achieve time/processor/data selection by re-
quiring programmers to manually annotate the programs so that time/processor

/data selection can be combined with synchronisation operations. For example,
the WC model requires programs to explicitly access special synchronisation
variables before and after accessing normal shared variables, so that the mem-
ory system is explicitly notified to propagate updates at synchronisation access
time. In the ERC model, programs are required to call an acquire primitive
before accessing shared data objects and call a release primitive after accessing
shared data objects, so that the memory system is explicitly notified of the entry
and exit of a critical region, and can select the exit time to propagate updates.
The LRC and EC models achieve both time and processor selections by requir-
ing programs to explicitly call acquire and release primitives at the entry and
exit of a critical region, respectively, so that the memory system can propagate
updates only to the next processor at the entry time (instead of at the exit time
as in the ERC model). Data selection in the EC model is achieved by requir-
ing the programmer to explicitly associate synchronisation objects with shared
data objects. The ScC model made one step toward (partially) transparent data
selection by taking advantage of the consistency scopes implicitly defined by
synchronisation primitives, but programmers may still have to explicitly define
additional consistency scopes in programs due to correctness considerations. Al-
though the programmer annotation approach can achieve time/processor/data
selection effectively, the programmer has to be very careful about these annota-
tions to ensure the correctness of the program. This imposes an extra burden on
programmers and increases the complexity of parallel programming.

The goal of our research is to design and implement an efficient DSM system
based on a transparent selective SC approach, which is able to achieve both high
performance and programming convenience by automatically selecting the right
time, right processor, and right data for maintaining a sequentially consistent
shared memory. Toward this end, we distinguish two types of programmers’ an-
notations: one is the synchronisation annotations which are required by both
the correctness of parallel programs (to avoid data races) and the correctness of
memory consistency; and the other is the annotations which are required only by
the correctness of memory consistency. For the first type of annotations, such as
the acquire and release synchronisation primitives in the ERC, LRC, EC and ScC
models, the DSM system can take advantage of them to achieve time/processor
selection without imposing any additional burden on programmers. However,
for the second type of annotation, such as the association between synchroni-
sation objects and shared data objects for data selection in the EC model, and
the additional consistency scopes in the ScC model, they are truly an extra
burden to programmers and should be replaced by automatic associations via
run-time detection (and/or compile-time analysis). As the first step, we focus
on the protocols and techniques used to achieve transparent data selection under
the condition of synchronised shared memory accesses. In other words, parallel
programs are assumed to use synchronisation primitives, such as acquire and
release, to avoid data races (as in the ERC, LRC, EC, and ScC models), but
no programmers’ annotation is required to associate shared data objects with
synchronisation operations, or to define consistency scopes.

2 Data selection

In general, data selection can reduce the amount of data propagated among
processors since it propagates only those shared data objects among processors.
In page-based DSM systems in particular, data selection can reduce the effect
of false sharing (False sharing occurs when two processors update different data
objects that lie in the same memory consistency unit, e.g. a page). Let us again
consider the example in the previous section. We assume data objects x and y lie
in the same page p. Though P; and P, don’t share any data objects, they now
share the same page p. When P; modifies page p by updating z, the updates of
x have to be propagated to Py in order to make the copy of p consistent in Py,
even though P; does not need those updates at all. This effect of false sharing
can be reduced if we can distinguish updates on different data objects located
in the same page and then selectively propagate them.

In page-based DSM systems, consistency can be maintained by either up-
date protocol or invalidate protocol. In update protocol, when a page is updated
its updates are propagated to update copies of the page in other processors.
In invalidate protocol, when a page is updated its copies in other processors
are invalidated by invalidation notices; when an invalid copy of the page is ac-
cessed the updates of the page are propagated. Therefore, in page-based DSM
systems, we distinguish between two kinds of data selection: selection of invalida-
tion notices, and selection of updates. Selection of invalidation notices means we
selectively propagate invalidation notices according to the true sharing of data
objects. Selection of updates means we selectively propagate updates of data
objects according to the true sharing among processors. In update protocol, we
can perform selection of updates. In invalidate protocol, we can perform both
selection of updates and selection of invalidation notices.

Selection of updates can be further divided into lazy and eager update se-
lection. Lazy update selection means only when a data object is accessed by a
processor, its updates are propagated to the processor. For example, when Py
accesses data object y, it requests updates of y from P;, and then P, propagates
updates of y to Py. Eager update selection means a data object is known in
advance to be accessed by a processor, and its updates are propagated to the
processor before it is accessed. For example, if P, knows in advance P will access
data object y, P, can eagerly propagate updates of y to P before P, accesses
and requests y. Fager update selection can be more efficient than lazy update
selection because it can propagate updates of several data objects in a single
message. However eager update selection risks propagating useless data if it can
not accurately detect in advance which data objects will be accessed by which
processors. In addition, lazy update selection can be easily achieved in invalidate
protocol.

Transparent data selection can be implemented at run-time and/or compile-
time. Run-time implementation can select useful data objects more accurately
than its compile-time counterpart, but its run-time overhead may sometimes
overshadow the benefit of data selection. A combination of run-time and compile-
time implementation would be a promising approach in the future.

In this paper we discuss protocols and techniques which can achieve trans-
parent data selection (especially eager update selection) at run-time by taking
advantage of a program behaviour called Regional Locality. The rest of this pa-
per is organised as follows. We introduce Regional Locality in Section 3. Then we
discuss update propagation protocols based on Regional Locality in Section 4.
These protocols are compared with related work in Section 5. Experimental re-
sults are analysed and discussed in Section 6. Finally, the major conclusions and
future work are presented in Section 7.

3 Regional Locality

Reference locality [12] in program behaviour has been studied and explored
extensively in memory design, code optimisation, multiprogramming, etc. There
are two broad classifications of locality: temporal locality, which means an address
accessed in the past is likely to be accessed in the near future; and spatial locality,
which says an address nearby in memory space to the one just accessed is likely
to be accessed in the near future. In addition to temporal locality and spatial
locality, many Distributed Shared Memory (DSM) concurrent programs exhibit
the third kind of reference locality — Regional Locality in their execution. Before
explaining Regional Locality, we need to give a brief introduction to regions in
the execution of DSM programs.

An execution of a DSM concurrent program can be viewed as a sequence
of regions which are delimited by synchronisation primitives, such as acquire,
release and barrier. A critical region begins with an acquire and ends with a
release, while a non-critical region begins with a release (out-most one in nested
critical regions) or a barrier and ends with an acquire (out-most one in nested
critical regions) or a barrier. We say two critical regions are the same if both of
them are protected by the same lock.

Regional Locality is the program behaviour in which a set of addresses that
are accessed in one critical or non-critical region will be very likely accessed as
a whole in the same critical region or other non-critical regions. For instance,
in a page-based DSM system, suppose processor P; enters a critical region and

accesses pages {mi, ma, ..., mp} during the execution of the critical region,
and processor P, enters the same critical region afterwards. P> will most likely
access pages {my, ma, ..., my} during the execution of this critical region, since

the same critical region usually protects the same set of data objects. Similar
behavior also exists in non-critical regions of a DSM program. For example,
suppose processor P; enters a non-critical region and accesses pages {m1, ma,
..., My} during the execution of the non-critical region, and processor P enters
another non-critical region afterwards. Since data objects accessed in a non-
critical region often migrate together from one processor to another processor,
which is regulated by the programmer to avoid data race in non-critical regions,
when P, accesses one or two members of the page set {m1, ma, ..., mp}, it will
very likely access every member of the set {mq, ma, ..., mp}.

Regional Locality is similar to temporal locality in the sense that it acquires
the knowledge of locality from the past execution of the program. Their differ-
ence is that temporal locality uses all the addresses accessed by a processor in
the past as one locality group for the processor itself, while Regional Locality
divides into groups the addresses accessed by a processor in the past according
to their occurring program regions and uses these groups as locality groups for
all processors. Like other kinds of locality, Regional Locality can also be explored
to improve performance of DSM programs. In this paper we explore Regional
Locality in update propagation in DSM systems.

4 Update propagation based on Regional Locality

A DSM update propagation protocol determines when and how updates on one
copy of a page are propagated to other copies of the same page on other pro-
cessors. Updates on a page can be represented by a single-writer scheme or by
a multiple-writer scheme [3]. An update propagation protocol can be integrated
with either a single-writer scheme or a multiple-writer scheme.

There have existed a number of different protocols for propagating updates
in DSM systems [7]. One protocol, adopted by the TreadMarks DSM system [1],
works as follows: when an old copy of a page needs to be renewed, the old
copy is invalidated first; only when the invalidated old copy is really accessed
by a processor and a page fault occurs, are the updates of the page sent to the
processor. We call this protocol as the Lazy Update Propagation (LUP) protocol
since it propagates updates lazily when updated pages are accessed. LUP is
actually an invalidate protocol without eager update selection.

In LUP each page fault involves an update requesting message to a remote
processor, and an update propagating message from a remote processor. The
large number of messages caused by page faults influence seriously the perfor-
mance of DSM systems. If we can apply eager update selection and prefetch
updates of several pages in a single page fault, we can reduce page faults and
the messages caused by page faults. In this way the performance of the DSM
system will be significantly improved. The challenge here is to prefetch as many
useful updates as possible while avoiding prefetching useless updates. It is impor-
tant to be aware that prefetch is a double-edged sword in the sense that prefetch
of useful updates can improve performance while prefetch of useless updates
may on the contrary seriously degrade the performance. The effect of prefetch
depends on the accuracy of update selection. However, it is non-trivial for up-
date selection to detect which updates are useful and which ones are useless to
a processor.

In the following sections we use Regional Locality as a heuristic in update
selection to detect which updates will be needed in the future execution of a
processor. Based on this knowledge we prefetch useful updates in our novel
update propagation protocols.

4.1 TUpdate propagation in critical regions

In update propagation we are only concerned about the updated pages whose
updates need to be propagated. To explore Regional Locality in update propa-
gation in critical regions, every lock in a processor is associated with a Critical
Region Updated Pages Set (CRUPS) which stores pages updated in a critical
region. The CRUPSs actually keep the knowledge of Regional Locality in critical
regions. A CRUPS is formed as follows. Before a processor enters a critical region
by acquiring a lock, an empty CRUPS is created for the lock. If the processor
updates a page during the execution of the critical region, the identifier of the
page is recorded into the CRUPS of the corresponding lock. When the processor
exits from the critical region, it stops recording in the CRUPS, but keeps the
the contents of the CRUPS for use in the next acquisition of the same lock.

According to Regional Locality, we know when a processor enters a critical
region it will very likely access the pages previously updated in the same crit-
ical region. So when a processor P» enters a critical region by acquiring a lock
from another processor P;, P; can assume that P, will access the pages in its
CRUPS of the lock and thus piggy-backs the updates of these pages on the lock
grant message. This idea is essentially a data prefetching technique based on the
acquired knowledge of Regional Locality. Based on the above idea we proposed
a hybrid update propagation protocol, called the Selective Lazy/FEager Update
Propagation (SLEUP)in [13].

4.2 TUpdate propagation in non-critical regions

To explore Regional Locality in update propagation in non-critical regions, we
detect the pages updated in non-critical regions and aggregate them together.
We propose a Non-Critical Region Updated Pages Set (NCRUPS) scheme for
grouping pages updated in non-critical regions. In every processor we associate
every non-critical region with a NCRUPS. The NCRUPSs actually keep the
knowledge of Regional Locality in non-critical regions. A NCRUPS is formed as
follows. When a processor enters a non-critical region, a unique empty NCRUPS
is created and assigned to the non-critical region; when a processor updates
a page during the execution of a non-critical region, the identifier of the page
is recorded into the corresponding NCRUPS; when a processor leaves a non-
critical region, it stops recording into the corresponding NCRUPS but saves the
NCRUPS for later use.

By using the NCRUPS scheme, we can group pages updated inside each
non-critical region and optimally propagate updates of these pages to a processor
when it is about to access them. We use some hints to decide whether a processor
is about to access the pages in a NCRUPS so as to propagate all the updates of
these pages to the processor. The first hint we use is the first page fault on any
page in a NCRUPS. This hint suggests all the pages in the NCRUPS might be
accessed soon by the processor according to Regional Locality. Therefore when a
fault on a page in a NCRUPS occurs in a processor, we propagate the updates
of all the pages in the NCRUPS to the processor. Based on the above idea, we

proposed an update propagation protocol called First Hit Update Propagation
(FHUP) in [8].

However the FHUP protocol does not have sufficient hints to detect correct
knowledge of Regional Locality for false sharing access patterns, and may cause
useless update propagation [8]. To overcome this drawback, we use both the first
and the second page faults on pages in a NCRUPS as hints. That is, if a page in
a NCRUPS is accessed in a non-critical region by a processor, and later another
page in the same NCRUPS is accessed in the same non-critical region by the
same processor, then all the pages in the NCRUPS are very likely to be accessed
by the processor and therefore the updates of all the pages in the NCRUPS
are propagated to the processor. Based on the above idea we proposed another
update propagation protocol called Second Hit Update Propagation (SHUP) in
[8]. The advantage of the SHUP protocol is that the second page fault is used
to correctly detect Regional Locality and avoid useless update propagation.

5 Comparison with related work

A Lazy Hybrid (LH) protocol [5] is proposed based on temporal locality. The
idea behind the LH protocol is that programs usually have significant temporal
locality, and therefore any page accessed by a process in the past is likely to
be accessed in the future. The LH protocol therefore selects updates of pages
that have been accessed in the past (regardless whether or not in the same
critical /non-critical region) by the processor acquiring a lock or arriving at a
barrier, and piggy-backs the updates on grant messages. The similarity between
LH and our protocols is that both of them use some kinds of locality heuristics to
prefetch updates of pages. The major difference between LH and our protocols
is the following: the former uses a heuristic without distinguishing the accessed
pages which are in the same critical /non-critical region from these pages which
are not, while the latter makes this distinction based on Regional Locality and
hence can be more accurate in selecting the updates for prefetch. Since the
heuristic in the LH protocol is very speculative, it can cause useless update
propagation, and thus degrades the performance of the underlying DSM system.
This point has been verified by our experimental results.

6 Experimental results

All our protocols are implemented in TreadMarks. The Lazy Hybrid protocol is
also implemented in TreadMarks in order to compare Regional Locality with tem-
poral locality in DSM. All these protocols are evaluated with the Lazy Update
Propagation (LUP) protocol adopted in TreadMarks, which does not explore
any locality and is a benchmark for those exploring locality.

The experimental platform consists of 8 SGI workstations running IRIX Re-
lease 5.3. These workstations are connected by a 10 Mbps Ethernet. Each of
them has a 100 MHz processor and 32 Mbytes memory. The page size in the
virtual memory is 4 KB.

We used 8 applications in the experiment: TSP, BT, S, Water, FFT, SOR,
Barnes, IS, among which the source code of TSP, (S, Water, FFT, SOR,
Barnes, IS are provided by TreadMarks research group. All the programs are
written in C.

application protocol Time |Total Data|Updates Data|Page Fault|Mesgs
(secs) | (bytes) (bytes)

LUP 15.86 | 1267683 448958 1029 2846

TSP LH 8.63 | 1287368 463437 355 1405
SLEUP 7.33 | 1252737 443896 245 1209

LUP 82.92 | 39511375 8921228 26478 96979

BT LH 72.08 | 40964979 9390072 13918 |68542
SLEUP 69.71 | 39148835 8761972 6469 |53925

LUP 20.09 | 10153006 6100023 3046 10432

QS LH 15.52 | 10844953 6962709 962 6095
SLEUP 13.36 | 9165498 5354832 956 5936
SLEUP+FHUP| 14.96 | 11596416 7838800 829 5447
SLEUP+SHUP| 12.38 | 9282800 5430895 930 5886

LUP 32.59 | 11717602 9980061 4314 24495

Water LH 36.82 | 14535830 12590288 2137 |21668
SLEUP 31.07 | 11834142 9981561 3024 21920
SLEUP+FHUP| 31.92 | 13759521 11607920 1733 |18906
SLEUP+SHUP| 30.63 | 12159638 9979899 1992 [19764

LUP 4.44 | 3220826 2188032 557 2135

FFT LH 9.26 | 5540076 4487644 174 1735
FHUP 4.87 | 3902122 2820048 291 1603

SHUP 4.60 | 3306240 2188032 557 2136

LUP 13.70 | 7391113 14140 203 4301

SOR LH 15.10 | 7934204 473636 16 4992
FHUP 14.53 | 7556048 134885 203 4302

SHUP 13.84 | 7416629 14140 203 4303

LUP 49.38 | 50943423 | 37198386 12791 |75943

LH X X X X X

Barnes FHUP 48.14 | 55534888 | 37687510 12640 |74318
SHUP 49.17 | 55136208 | 37199430 12763 |75659

LUP 113.42| 71732008 | 69626536 4444 |11305

IS LH 120.15| 75004402 | 73404180 192 8044
FHUP 108.20| 72100823 | 69626536 2774 7965

SHUP 110.62| 72223052 | 69623400 3998 10384

Table 2. Performance Statistics for applications

Among these applications, TSP and BT only use locks for synchronisation,
and @S uses one lock to protect a task queue, Water uses both locks and bar-
riers for synchronisation, and FFT, SOR, Barnes, and IS only use barriers for
synchronisation. The FHUP and SHUP protocols are not applied to TSP and

BT since there is no update on shared memory in non-critical regions in these
two applications. Also since there are no critical regions in FFT, SOR, Barnes,
and IS, the SLEUP protocol is not applied to them.

The experimental results are given in Table 2. In the table, the item Time
is the total running time of an application program; the Total Data is the sum
of total message data; the Updates Data is the sum of total propagated updates
data; the Page Fault is the number of page faults; and the Mesgs is the total
number of messages;

6.1 Regional Locality

From the experimental results we know Regional Locality exists in many DSM
concurrent programs. Among the applications with Regional Locality are TSP,
BT, QS, Water, Barnes, and IS. By applying SLEUP, FHUP and SHUP,
which explore Regional Locality, the average improvement on the performance of
these applications is 20.2%. The maximum improvement is up to 53.8% (T SP).
Particularly, by exploring Regional Locality, the number of page faults and the
number of messages are reduced to 46% and 66% respectively in average. There
is no improvement on the performance of some applications, such as F/FT and
SOR, because they don’t have any Regional Locality.

6.2 Regional Locality vs. temporal locality

Protocols based on Regional Locality outperform those based on temporal lo-
cality for all of our applications. Compared with LUP, LH degrades the perfor-
mance of many programs, such as Water, FFT, SOR, Barnes, IS. (Because
message buffers overflow at barriers, we have not provided running results of
Barnes based on the LH protocol !). The average degradation is 34.4%, and the
maximum degradation is up to 108.6% (FFT'). The reason for the degradation
is that LH propagates a large number of useless updates. The average amount
of useless updates propagated in LH is 27.8% of the total propagated updates.
Even though LH can improve some applications, such as TSP, BT, and @S, its
performance is still not as good as SLEUP/SHUP /FHUP. The performance of
SLEUP/SHUP/FHUP is 17.7% better than that of LH on average. The aver-
age amount of updates propagated in SLEUP/SHUP /FHUP is 29.7% less than
that in LH. Even though in some applications, such as FFT, SOR and IS, the
number of page faults and the number of messages in LH are less than those
in SLEUP/SHUP/FHUP, the overall performance of SLEUP/SHUP/FHUP is
better than that of LH since LH propagates a large number of useless updates.

From the above discussion we know temporal locality is more speculative
than Regional Locality. Temporal locality does not have as accurate a knowledge
of the to-be-accessed data as Regional Locality. This inaccuracy of temporal
locality causes useless update propagation and degrades the performance of DSM
systems.

! The buffer overflows because of too much (useless) update propagation at barriers
in LH, and therefore its performance will be further degraded at barriers

6.3 Data selection and Regional Locality

The accuracy of data selection in SLEUP/SHUP /FHUP depends on the detec-
tion of Regional Locality. We use the CRUPS scheme to detect Regional Locality
in critical regions, and use the NCRUPS scheme and the first/second page fault
to detect Regional Locality in non-critical regions. The accuracy of data selection
affects the performance of those protocols. On one hand, incorrect data selec-
tion causes useless update propagation. For example, for FFT and SOR the
FHUP protocol detects the incorrect knowledge of Regional Locality and selects
the incorrect data objects. So FHUP propagates useless updates and degrades
performance in these two applications. On the other hand, incomplete data se-
lection hinders the improvement of performance. For instance, SHUP can not
perform data selection as immediate as FHUP in IS and Barnes. So SHUP does
not perform as well as the FHUP for these two applications.

From the above discussion we know, even though both FHUP and SHUP are
based on Regional Locality, data selection in FHUP is more speculative while
data selection in SHUP is more conservative in terms of data selection. Their
merits become prominent in different applications.

The overhead of the CRUPS scheme is very small because it takes advantage
of the write-protection mechanism provided in the TreadMarks system. There
is some overhead for bookkeeping the remote NCRUPS list in the NCRUPS
scheme. For example, for FFT and SOR where there is no Regional Locality,
SHUP slightly degrades their performance (3.6% degradation for FFT, 1.0%
degradation for SOR) because of this bookkeeping overhead.

7 Conclusions

In this paper, we have discussed transparent data selection and its implemen-
tation based on the program behaviour — Regional Locality and evaluated this
new class of reference locality in update propagation in DSM systems. We have
discussed three novel update propagation protocols, SLEUP, FHUP, and SHUP,
which achieve transparent data selection based on Regional Locality in DSM
systems. The experimental results indicate:

— Regional Locality exists in the execution of many Distributed Shared Mem-
ory concurrent programs. Update propagation protocols exploring Regional
Locality significantly improve the performance of the DSM systems.

— Data selection techniques based on Regional Locality outperform those based
on the more speculative temporal locality. Protocols exploring temporal lo-
cality cause performance degradation for many applications in our experi-
ment.

Our future research is to implement transparent data selection at both run-
time and compile-time.

Acknowledgements

This research is supported by an ARC (Australian Research Council) large grant
(A49601731), and a NCGSS grant by Griffith University.

References

1.

2.

10.

11.

12.

13.

C.Amza, et al: “TreadMarks: Shared memory computing on networks of worksta-
tions,” IEEE Computer, 29(2):18-28, February 1996.

B.N. Bershad, et al: “The Midway Distributed Shared Memory System,” In Proc.
of IEEE COMPCON Conference, ppb28-537, 1993.

J.B. Carter, J.K. Bennett, and W. Zwaenepoel: “Techniques for reducing
consistency-related information in distributed shared memory systems,” ACM
Transactions on Computer Systems, 13(3):205-243, August 1995.

M.Dubois, C.Scheurich, and F.A .Briggs: “Memory access buffering in multiproces-
sors,” In Proc. of the 13th Annual International Symposium on Computer Archi-
tecture, pp.434-442, June 1986.

S. Dwarkadas, et al: “Evaluation of Release Consistent Software Distributed Shared
Memory on Emerging Network Technology”, In Proc. of the 20th Symposium on
Computer Architecture, pp.144-155, May 1993.

K. Gharachorloo, D.Lenoski, J.Laudon: “Memory consistency and event ordering
in scalable shared memory multiprocessors,” In Proc. of the 17th Annual Interna-
tional Symposium on Computer Architecture, ppl5-26, May 1990.

Z. Huang, W.-J. Lei, C. Sun, and A. Sattar: “Heuristic Diff Acquiring in Lazy Re-
lease Consistency Model,” In Proc. of 1997 Asian Computing Science Conference
(ASIAN’97), LNCS 1345, Springer-Verlag, pp98-109, Dec. 1997.

Z. Huang, C. Sun, and A. Sattar: “Exploring Regional Locality in Dis-
tributed Shared Memory,” In Proc. of 1998 Asian Computing Science Conference
(ASIAN’98), Dec. 1998.

L. Iftode, J.P. Singh and K. Li: “Scope Consistency: A Bridge between Release
Consistency and Entry Counsistency,” In Proc. of the 8th Annual ACM Symposium
on Parallel Algorithms and Architectures, 1996.

P. Keleher: “Lazy Release Consistency for Distributed Shared Memory,” Ph.D.
Thests, Rice Univ., 1995.

L. Lamport: “How to make a multiprocessor computer that correctly executes mul-
tiprocess programs,” IEEE Transactions on Computers, 28(9):690-691, September
1979.

J.R. Spirn: “Program Locality and Dynamic Memory Management,” PhD thesis,
Princeton University, 1973.

C. Sun, Z. Huang, W.-J. Lei, and A. Sattar: “Towards Transparent Selective Se-
quential Consistency in Distributed Shared Memory Systems,” In Proc. of the 18th
IEEE International Conference on Distributed Computing Systems, Amsterdam,
May 1998.

