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Abstract

Restricted permutations are those constrained by having to avoid sub-
sequences ordered in various prescribed ways. They have functioned as
a convenient descriptor for several sets of permutations which arise natu-
rally in combinatorics and computer science. We study the partial order
on permutations (and more general sequences) that underlies the idea of
restriction and which gives rise to sets of sequences closed under taking
subsequences. In applications, the question of whether a closed set has
a finite basis is often considered. We give a family of sets that have a
finite basis, and then use them to study the inverse problem of describing
a closed set from its basis. We give enumeration results in all cases where
the basis consists of a permutationof length 3 and a permutation of length
4. The paper is an extended version of [2] in that it contains full proofs of
the results presented there which have also been obtained by West [15].

1 General setting

The study of permutations which are constrained by not having one or more
subsequences ordered in various prescribed ways has been motivated both by its
combinatorial difficulty and by its appearance in some data structuring problems
in Computer Science. The fundamental relation that underpins this study is
involvement which captures the idea of one sequence being ordered in the same
way as a subsequence of another. Two numerical sequences π = [p1, p2, . . . , pm]
and ρ = [r1, r2, . . . , rm] of the same length are said to be order isomorphic if,
for all i, j, pi < pj if and only if ri < rj . Order isomorphism is clearly an
equivalence relation on sequences. Throughout this paper we shall consider
only sequences of distinct elements. Every such sequence of length n is order
isomorphic to a unique permutation of 1, 2, . . . , n and, for this reason, most of
our results are stated for permutations. Unless otherwise stated “permutation”
will always mean an arrangement of 1, 2, . . . , n for some n. Generally, sequences
will be denoted by Greek letters and their elements by Roman letters.

If π and σ are sequences then π is said to be involved in σ if π is order
isomorphic to a subsequence ρ of σ; we write π � σ. For example, [2, 3, 1, 4] �
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[6, 3, 5, 7, 2, 4, 1, 8] because of the subsequence [3, 5, 2, 8] in the second permuta-
tion. For permutations on a small number of symbols it is often convenient to
omit the brackets and commas and write 2314 � 63572418.

A map α from {1, . . . ,m} to {1, . . . , n} is said to be monotonic if α(i) < α(j)
whenever i < j. Monotonic maps allow us to describe the terms ‘subsequence’
and ‘order isomorphism’ using functional composition (which we write from left
to right). Suppose that π and σ are permutations. A sequence of positive
integers is order isomorphic to π if and only if it has the form πα where α is a
monotonic map. Furthermore a sequence is a subsequence of σ if and only if it
has the form βσ with β a monotonic map. In particular π � σ if and only if
there exist monotonic maps α, β such that πα = βσ

A set X of permutations is said to be closed if, whenever σ ∈ X and π � σ,
then π ∈ X . The archetypal example of a closed set is the set of stack sortable
permutations. A sequence is stack sortable if, when it is presented as input to
a stack and subjected to an appropriate series of ‘push’ and ‘pop’ operations,
the stack can produce the elements in ascending order. It is evident that if a
sequence is stack sortable then so is any sequence order isomorphic to it and
also any subsequence. In particular, if σ is a stack sortable permutation and
π � σ then π is also stack sortable.

Stack sortable permutations were first studied in [6] where two results were
proved which have continued to inspire the study of closed sets. The first is that
a permutation is stack sortable if and only if it does not involve the permutation
231. The second is that the number of stack sortable permutations of length n
is

(
2n
n

)
/(n + 1). The first of these results motivates the definition of the ‘basis’

of a closed set below and allows several combinatorial results in the literature to
be described uniformly. We shall survey some of these below and give some new
results in the next section. The second result has been generalised to a number
of other closed sets and we shall present some further results in section 3. At
this point however it is convenient to introduce the terminology Xn to denote
the subset of X whose permutations have length n.

If X is closed let X ? denote the set of permutations, minimal with respect to
�, that do not belong to X . In turn, X ? determines X as {α|β 6� α for all β ∈
X ?}. The set X ? is called the basis of X . In this terminology the set of stack
sortable permutations has the basis {231}.

Many natural closed sets of permutations X ? have a very simple basis. For
example:

• If X is the set of permutations that can be sorted by a restricted input
deque then X ? = {4231, 3241} [6, 7, 11].

• If X is the set of permutations that can be expressed as the interleaving
of two increasing subsequences then X ? = {321} [6].

• If X is the set of permutations that can be expressed as the interleaving
of an increasing subsequence and a decreasing subsequence then X ? =
{3412, 2143} (see [5, 11]).
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• If X is the set of permutations that can be obtained by a ‘riffle’ shuffle of
a deck of cards 1, 2, . . . , n then X ? = {321, 2143, 2413} (see the proof of
Proposition 3.6 below).

• If X is the set of all ‘separable’ permutations [3] then X ? = {3142, 2413}
(see also [9] where these permutations are considered in the context of
‘bootstrap percolation’).

However, there are also many closed sets whose basis is not simple to describe
nor even finite; examples of closed sets with an infinite basis are given in [13, 7].
The converse problem of describing the closed set defined by a given basis B has
also attracted some study; we call this closed set A(B), the letter A recalling
that A(B) is the set of permutations which avoid every permutation of B. It
is trivial to find A(B) if the basis elements are permutations of lengths 1 or
2 (A({1}) is empty, A({21}) consists only of identity permutations, etc.). In
[10] Simion and Schmidt gave complete descriptions of closed sets whose bases
consist of sets of permutations of length 3. West [14] and Stankova [11, 12] have
begun the study of bases comprising permutations of length 4 but this is still
very incomplete.

Another theme running through the above works is enumeration:– finding
the number of permutations of each length in a closed set. We let An(B) be the
set of permutations in A(B) of length n. Occasionally it is necessary to consider
the permutations of length n of some set other than {1, 2, . . . , n} which avoid B
but this set has the same size as An(B).

In all this work it is very useful to take advantage of some natural symmetries
based on the following facts (which were first made explicit in [10]). If σ is any
permutation on {1, 2, . . . , n}, let σ̄ and σ?, respectively, denote the permutations
obtained from σ by replacing every element si by n + 1 − si and reversing the
elements of σ. Also, as usual, let σ−1 denote the permutation inverse of σ. Then

1. If π � σ then π̄ � σ̄

2. If π � σ then π? � σ?

3. If π � σ then π−1 � σ−1

These 3 symmetries generate the dihedral group D of order 8. It acts in a
natural way on sets of permutations. As a direct consequence of the definitions
we have

LEMMA 1.1 If λ is any element of the symmetry group D and X is any closed
set of permutations with basis X ? then λ(X ) is closed and has basis λ(X ?).
Furthermore, |Xn| = |λ(X )n| for all n.

As an example of the power of this lemma consider the problem of finding
A(σ) when σ has length 4. Although there are 24 such problems they fall into
7 symmetry classes under the action of D. According to the lemma |An(σ)| =
|An(τ)| whenever σ and τ are equivalent under D. Mysteriously, this equation
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sometimes holds when σ and τ are not equivalent. Some reasons for this are
given in [11, 12] but much remains to explain. As we shall see in section 3 there
are numerous other equalities of this sort.

In section 2 of the paper we give some constructions and results for combining
closed sets. We follow this with a discussion of a large family of closed sets each
of which has a finite basis. These closed sets will feature in section 3 but we
end section 2 by using them to solve a problem on riffle shuffles. Section 3 is
devoted to the enumeration problem for closed sets defined by a given basis; we
give a complete treatment of the case where the basis consists of a permutation
of length 3 and a permutation of length 4.

2 Some finitely based sets

2.1 Combining closed sets

There are several ways in which two or more closed sets can be combined to
give another closed set. This subsection reviews those combinations which are
used later in the paper.

THEOREM 2.1 Suppose that X and Y are closed sets. Then X ∩Y and X ∪Y
are also closed. Moreover if X and Y each have a finite basis then both X ∩ Y
and X ∪ Y have a finite basis.

Proof That X ∩ Y and X ∪ Y are closed follows directly from the definitions.
Now suppose that X = A(S) and Y = A(T ) for finite sets S and T . Since,
obviously, X ∩ Y = A(S ∪ T ) it follows that X ∩ Y has a finite basis.

Finally consider a permutation α in the basis of X ∪Y. Such a permutation
belongs neither to X nor to Y and so has subsequences σ and τ which are order
isomorphic to permutations in S and T respectively. However, α is minimal
and so no proper subsequence also has this property. Thus α must be the union
of σ and τ and so has bounded length. Therefore there are only finitely many
possibilities for α. �

THEOREM 2.2 Suppose that X and Y are closed sets each with a finite basis.
Let [X ,Y] be the set of all permutations which are concatenations στ where
σ is order isomorphic to a permutation in X and τ is order isomorphic to a
permutation in Y. Then [X ,Y] is closed. Moreover if X and Y are each finitely
based then so is [X ,Y]

Proof It is evident that [X ,Y] is closed. Suppose that X and Y are each
finitely based and that α is a permutation in the basis of [X ,Y]. Let α = στk
where k is the last symbol of α and where (since α is minimal with respect to
not belonging to [X ,Y]) we may presume that σ and τ are order isomorphic to
permutations of X and Y respectively. Among all such decompositions for α
choose the one with σ of maximal length. Then, if t is the first symbol of τ , σt
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is not order isomorphic to a permutation in X and τk is not order isomorphic
to a permutation in Y.

It follows that σt has a subsequence σ′t order isomorphic to a permutation in
the basis S of X and τk has a subsequence τ ′k order isomorphic to a permutation
in the basis T of Y. But then the subsequence σ′tτ ′k (or σ′τ ′k if t is a symbol
of τ ′) of α cannot be order isomorphic to a permutation of [X ,Y] and, by
minimality of α, must be α itself. Since σ′t and τ ′k are bounded in length
(since S and T are finite), the length of α is also bounded. �

2.2 Profile classes

If A and B are sets or sequences we write A < B to denote that a < b for all a ∈
A, b ∈ B. As a first use of this notation we define the profile of a permutation.
If ρ and π are permutations then ρ is said to have profile π = [p1 . . . pm] if ρ has
a partition into segments ρ = ρ1 . . . ρm where m is minimal subject to

1. each ρi is a non-empty sequence of increasing consecutive symbols

2. ρi < ρj if and only if pi < pj

For example, 34597812 has profile 2431 because of its segments 345, 9, 78, 12.
Clearly, a permutation determines its profile uniquely. Not every permutation
can be a profile however; to be a profile the permutation must not contain any
segment t, t + 1.

LEMMA 2.3 If π is a valid profile and has length m then the number of per-
mutations of length n which have profile π is

(
n−1
m−1

)
.

Proof If ρ is a permutation with profile π (by way of a decomposition ρ =
ρ1 . . . ρm) then ρ is determined by the lengths of the ρi, i.e. by an ordered set
of m positive integers whose sum is n. Since every such composition of n can
arise in this way and there are

(
n−1
m−1

)
such compositions the result follows. �

We define a set Σ of permutations to be profile-closed if all its members are
valid profiles and, whenever β is a valid profile with β � α ∈ Σ, then β ∈ Σ. The
profile closure of a set of profiles is defined to be the smallest profile-closed set
containing it. As an example, the profile closure of {2431} is the profile-closed
set {2431, 132, 321, 21, 1}.

THEOREM 2.4 If Σ is a profile-closed set of permutations then P (Σ), the
set of permutations whose profile lies in Σ, is closed. Furthermore, if Σ is finite
then P (Σ) has a finite basis.

Proof It follows from the definitions that, if ρ has profile π and λ � ρ, then λ
has profile µ where µ � π. This proves the first part. For the second part let β
be a permutation on 1, 2, . . . ,m in the basis of P (Σ). Suppose that β has two
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adjacent consecutive symbols t, t + 1; then β and β − t have the same profile.
However, β − t is order isomorphic to a permutation in P (Σ) and so its profile
lies in Σ. Thus β ∈ P (Σ) which is impossible. Hence no two adjacent symbols
of β can be consecutive.

The permutation β−m can have at most two adjacent consecutive symbols
(which, in β, were separated by m) and so β − m has length at most 1 more
than the length of its profile. But β − m ∈ P (Σ) and so its profile lies in Σ.
Therefore the length of β is bounded and the proof is complete. �

We shall appeal to these results in the next section. They may be gener-
alised in several ways. We can, of course, consider profiles based on decreasing
segments rather than increasing segments. More interestingly we can consider
profiles where segments are allowed to be both increasing and decreasing; a sim-
ilar finite basis result can be proved. We can also consider permutations with
a profile where one or more of the increasing segments is of bounded length. In
particular, in the next section we require, at one point, profiles where one of
the segments has length 0 or 1; we shall show this by a superscript 1; so, for
example, permutations with the (generalised) profile 1312 would be structured
as [1, 2, . . . , k, n, k + 1, . . . , n− 1] for some k.

2.3 Riffle shuffles

We have already mentioned, in section 1, the closed set of permutations obtained
by a standard riffle shuffle of a deck of n cards. These riffle shuffle permutations
are, of course, just merges of cards 1, 2, . . . ,m (for some m) and cards m +
1, . . . , n. More generally we wish to consider Sr the set of r-shuffles which are
defined by cutting a deck into r sections and interleaving these sections in any
way. The inverse of an r-shuffle π is, by definition, an ordering of the deck of
cards from which the r-shuffle π could restore the deck to its original order.

LEMMA 2.5 A permutation π of length n is an r-shuffle if and only if there
exist partitions

⋃r
k=1 Ak and

⋃r
k=1 Ik of {1, . . . , n} such that

1. Ik < Ik+1 for all k

2. π(Ak) = Ik for all k

3. π|Ak
is monotonic increasing for all k

Proof An r-shuffle begins by dividing {1, . . . , n} into segments I1, . . . , Ir satis-
fying property 1. When the segments are interleaved each set Ik is distributed,
without disturbing its order, into a set of positions Ak of the resulting permu-
tation π and therefore conditions 2 and 3 hold. The converse is clear. �

An immediate consequence of this lemma is a corresponding characterisation
of the inverses of shuffles.
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LEMMA 2.6 A permutation π of length n is the inverse of a t-shuffle if and
only if there exist partitions

⋃t
k=1 Bk and

⋃t
k=1 Jk of {1, . . . , n} such that

1. Jk < Jk+1 for all k

2. π(Jk) = Bk for all k

3. π|Jk
is monotonic increasing for all k

Notice that π is the inverse of a t-shuffle if and only if π has at most t − 1
descents (positions i where πi > πi+1). The number St(n) of permutations of
this type is the classical Simon Newcomb’s problem (see p.213ff of [8]). Also
notice that S−1

t = [I, I, . . .] where I is the set of all identity permutations and
so S−1

t and St are finitely based by Theorem 2.2 and Lemma 1.1.
The main result of this subsection is a structure theorem for the closed set

Sr ∩ S−1
t .

THEOREM 2.7 Let Σ be the profile closure of the single permutation

[1, r + 1, 2r + 1, . . . , (t− 1)r + 1, 2, r + 2, . . . , (t− 1)r + 2, 3, . . . , n]

Then P (Σ) = Sr ∩ S−1
t .

Proof Suppose that π ∈ Sr ∩S−1
t . Let {Ai}r

k=1, {Ik}r
k=1, {Bk}t

k=1, {Jk}t
k=1 be

the sets defined and guaranteed by the previous two lemmas. Let Chk = Ah∩Jk

and Dhk = Ih ∩Bk.
Since Chk, Ch+1,k ⊆ Jk, π|Jk

is monotonic increasing, and

π(Chk) = Dhk = Ih ∩Bk < Ih+1 ∩Bk = Dh+1,k = π(Ch+1,k)

we have Chk < Ch+1,k. Furthermore Crk = Ar ∩ Jk < A1 ∩ Jk+1 = C1,k+1.
Therefore

C11 < C21 < . . . < Cr1 < C12 < C22 < . . .

Also, by a similar argument,

D11 < D12 < . . . < D1s < D21 < D22 < . . .

It follows that the profile of π is in the set Σ. This proves one half of the
Theorem. The converse can be proved by reversing the foregoing argument. �

In principle, this theorem allows the enumeration problem to be solved for any
fixed Sr ∩ S−1

t . We illustrate this for the standard riffle shuffles (2−shuffles) in
the next lemma.

LEMMA 2.8 The number of riffle shuffles of a deck of n cards which can be
restored by a riffle shuffle is

(
n+1

3

)
+ 1.
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Proof According to Theorem 2.7 S2∩S−1
2 = P (Σ) where Σ = {1324, 213, 132, 21, 1}

is the profile closure of 1324. Therefore, by Lemma 2.3,

|(S2 ∩ S−1
2 )n| =

(
n− 1

3

)
+ 2

(
n− 1

2

)
+

(
n− 1

1

)
+

(
n− 1

0

)
=

(
n + 1

3

)
+ 1

�

3 Closed sets with a basis of two permutations
of lengths 3 and 4

In this section we consider all closed sets which have a basis of two permutations,
α of length 3, β of length 4. Of the 144 = 3! × 4! pairs of such permutations
we may immediately reduce to a complete set of pairs inequivalent under the
symmetry group D. There are 30 such pairs but 12 of them are degenerate in
the sense that α � β and therefore {α, β} is not a basis of a closed class. For
the remaining 18 pairs the following table gives the values of an = |An(α, β)| or
a recurrence relation they satisfy. Every pair α, β with α 6� β is equivalent to
one of these pairs.

α, β an = |An(α, β)|
1 123, 4321 0 for n ≥ 7
2 321, 2134 n +

(
n
3

)
+

(
n+1

4

)
3 321, 1324 1 +

(
n
2

)
+

(
n+1

5

)
4 132, 4321 1 +

(
n+1

3

)
+ 2

(
n
4

)
5 123, 4213 3× 2n−1 −

(
n+1

2

)
− 1

6 123, 3412 2n+1 − 2n− 1−
(
n+1

3

)
7 132, 4312 (n− 1)2n−2 + 1
8 132, 4231 (n− 1)2n−2 + 1
9 132, 3214 an = 4an−1 − 5an−2 + 3an−3

10 123, 3214 an = 3an−1 − an−2

11 132, 1234 an = 3an−1 − an−2

12 132, 4213 an = 3an−1 − an−2

13 132, 4123 an = 3an−1 − an−2

14 132, 3124 an = 3an−1 − an−2

15 123, 2143 an = 3an−1 − an−2

16 123, 3142 an = 3an−1 − an−2

17 132, 2134 an = 3an−1 − an−2

18 132, 3412 an = 3an−1 − an−2

In the remainder of this section we give the main ideas behind this table in
a series of propositions 3.1 to 3.18, one for each line of the table. Note that
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cases 10–18 all define the same sequence 1, 2, 5, 13, 34, . . . of alternate Fibonacci
numbers.

PROPOSITION 3.1 If α = 123 and β = 4321 the values of |An(α, β)| are
1, 2, 5, 13, 25, 25 for 1 ≤ n ≤ 6 and zero for n ≥ 7.

Proof For 1 ≤ n ≤ 6 this follows from direct enumeration whilst for n ≥ 7 it
is a special case of a theorem of Erdös and Szekeres [4]. �

The proofs of the next three propositions are all similar so we give details
for the last only.

PROPOSITION 3.2 If α = 321 and β = 2134 then A(α, β) is the set of
permutations whose profiles are in the profile closure of 146271351. Moreover,
|An(α, β)| = n +

(
n
3

)
+

(
n+1

4

)
PROPOSITION 3.3 If α = 321 and β = 1324 then A(α, β) is the set of per-
mutations whose profiles are in the profile closure of 21354 and 351624. More-
over, |An(α, β)| = 1 +

(
n
2

)
+

(
n+1

5

)
PROPOSITION 3.4 If α = 132 and β = 4321 then A(α, β) is the set of per-
mutations whose profiles are in the profile closure of 32415 and 42135. Moreover,
|An(α, β)| = 1 +

(
n+1

3

)
+ 2

(
n
4

)
Proof Note first that the profile closure of 32415 and 42135 is the set of profiles

P = {32415, 42135, 3214, 3241, 4213, 213, 321, 21, 1}

It is straightforward to verify that any permutation whose profile is in P must
avoid both 132 and 4321. To prove that any permutation of length n which
avoids both 132 and 4321 has profile in P we argue by induction on n. Let σ′

be the permutation obtained by removing n from σ. By induction, the profile
of σ′ is one of the profiles in P . We shall consider the different possibilities
for the profile of σ′ and verify that when n is inserted into such a permutation
to produce a permutation that avoids both 132 and 4321 then the result has a
profile that is also in P .

1. σ′ = γ3γ2γ4γ1γ5. This is the case that σ′ has profile 32415; each γi is
an increasing sequence of consecutive symbols and the subscripts indicate
the relative values of symbols in different γi. Notice that n cannot be
inserted in the interior of any γi since that would introduce a subsequence
order isomorphic to 132 (this observation applies to all the cases). Also
n cannot be inserted before γ3 since that would introduce a subsequence
order isomorphic to 4321. Nor can n be inserted anywhere between γ3 and
γ5 for that would produce a subsequence order isomorphic to 132. So the
only valid place where n can be inserted is after γ5 and then the result
also has profile 32415
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2. σ′ = γ4γ2γ1γ3γ5. Again we need only consider insertion points for n which
fall between γ-strings and, just as above, the only possible place is at the
end of σ′ giving a permutation also of profile 42135.

3. σ′ = γ3γ2γ1γ4. The argument is exactly the same.

4. σ′ = γ3γ2γ4γ1. To avoid introducing a subsequence order isomorphic to
4321 or 132 the only possible places to insert n are between γ4 and γ1, or
after γ1. The former yields a permutation with profile 3214 and the latter
yields a permutation with profile 32415.

5. σ′ = γ4γ2γ1γ3. Here the valid insertion points are between γ4 and γ2

which gives the profile 4213, and after γ3 giving the profile 42135.

For σ′ of the form γ2γ1γ3, γ3γ2γ1, γ2γ1, γ1 the argument is similar.
Finally, we apply Lemma 2.3 to each of the profiles in P . This shows that

|An(α, β)| = 2
(
n−1

4

)
+ 3

(
n−1

3

)
+ 2

(
n−1

2

)
+

(
n−1

1

)
+

(
n−1

0

)
= 1 +

(
n+1

3

)
+ 2

(
n
4

)
�

PROPOSITION 3.5 If α = 123 and β = 4213 then An(α, β) = 3 × 2n−1 −(
n+1

2

)
− 1

Proof It is convenient to consider the equivalent problem of finding |An(321, 3124)|.
We begin by considering permutations which have a decomposition into seg-
ments φ1φ2 . . . φr where φi < φi+1, and each φi is order isomorphic to [2, 3, . . . , k, 1]
with k = |φi|. For convenience we call such permutations φ-permutations. Note
that we allow |φi| = 1 in which case φi is called trivial. Actually, the set of
φ-permutations is precisely A(321, 312) although we shall not need this fact.

Given a permutation σ ∈ A(321, 3124) we write σ = γδ where γ is the
longest initial segment of σ which is a φ-permutation. We shall now prove, by
induction on n, that γ < δ and that σ has one of the following forms:

(a) γ

(b) γδ2δ1, with |δ1| > 1

(c) γδ2δ4δ
(1)
1 δ3

(d) γδ3δ
(1)
1 δ4δ2

(e) γδ2δ4δ
(1)
1 δ5δ3

where each δi is a non-empty increasing sequence of consecutive integers, the
superscript (1) signifies that the length of δi is 1, and δi < δi+1.

To carry out the inductive step we consider a permutation σ = γδ of length
n − 1 where γ < δ and σ has one of the 5 forms above. We shall prove that
if n is inserted anywhere within σ, without introducing a subsequence order
isomorphic to 321 or 3124, then the resulting sequence is also of this type. We
shall consider each case in turn.
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(a) σ = γ, i.e. σ = φ1φ . . . φr is a φ-permutation. If |φi| ≥ 2 the final two
symbols of φi are decreasing and, in order to avoid introducing a subsequence
order isomorphic to 321, n must not be inserted before the first of these two
symbols. Therefore the only valid insertion points for n are immediately before
the last symbol of the final non-trivial φi or at a later place than this.

If n were to be inserted between symbols s, t of φi = [t + 1, t + 2, . . . , s, t]
(where φi+1, . . . , φr are all trivial) then we would obtain

[φ1φ2 . . . φi−1, t + 1, t + 2, . . . , s, n, t, s + 1, s + 2, . . . , n− 1]

and then with [φ1φ2 . . . φi−1], [t + 1, t + 2, . . . , s],[n],[t],[s + 1, s + 2, . . . , n− 1] in
the roles of γ, δ2, δ4, δ

(1)
1 , δ3 respectively we would have a permutation of type

(c).
If n were to be inserted in a later position we would obtain one of

[φ1φ2 . . . φi, u, u + 1, . . . , n− 2, n− 1, n]

[φ1φ2 . . . φi, u, u + 1, . . . , n− 2, n, n− 1]

[φ1φ2 . . . φi, u, u + 1, . . . , v, n, v + 1, . . . , n− 2, n− 1] with v + 1 < n− 1

In the first two cases we again have a permutation of type (a) while in the third
case we have a permutation of type (b) (with [φ1φ2 . . . φi, u, u + 1, . . . , v] in the
role of γ, [n] in the role of δ2, and [v + 1, . . . , n− 2, n− 1] in the role of δ1).

(b) σ = γδ2δ1 with δ1 = b1b2 . . . bu and u ≥ 2. In this case (and all further
cases) n is necessarily inserted within δ to avoid having a subsequence order
isomorphic to 321. In fact, only two insertion points are valid. If n is inserted
before the final symbol of δ2 a subsequence order isomorphic to 321 would
be created. On the other hand, if n is inserted after the second symbol of
δ1 = b1b2 . . . we would obtain a subsequence xb1b2n which is order isomorphic
to 3124 (here x ∈ δ2). The two possible insertion points are therefore between
δ2 and δ1 which leads to a permutation of type (b) again; or between b1 and
b2 which leads to a permutation of type (d) (with δ2, [b1], [n], [b2, . . . , bu] in the
roles of δ3, δ1, δ4, δ2 respectively).

(c) σ = γδ2δ4δ
(1)
1 δ3. To avoid introducing a subsequence order isomorphic to

321 n cannot be inserted before the final symbol of δ4. Also, to avoid introducing
a subsequence order isomorphic to 3124 n cannot be inserted after the first
symbol of δ3. The only possible insertion points are therefore between δ4 and
δ
(1)
1 which gives a permutation of type (c) again; or between δ

(1)
1 and δ3 which

gives a permutation of type (e).
Cases (d) and (e) are handled in a similar way.
Next observe that the classification of A(321, 3124) into the 5 types above is

a disjoint partition of A(321, 3124) (this is why the condition |δ1| > 1 is needed
for type (b):— if |δ1| = 1 then δ2δ1 would have the form of one of the segments
φi of γ and so γ would not be a longest initial φ-permutation of σ).

Thus |An(321, 3124)| can be obtained by enumerating the permutations of
length n of each of the 5 types and summing the results. This is easily done.
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For example (the most complicated case) permutations γδ2δ4δ
(1)
1 δ5δ3 of length

n (type (e)) are completely determined by the lengths of φ1, . . . , φr (where
γ = φ1 . . . φr) and the lengths of δ2, δ4, δ5, δ3. These are a set of at least 4
positive integers whose sum is n− 1, and every such set of integers gives rise to
a permutation of length of type (e). Therefore there are 2n−2−1−(n−2)−

(
n−2

2

)
such permutations. Carrying out a similar analysis in all the other cases leads
to the required result. �

PROPOSITION 3.6 1. A(321, 2143) = A(321, 2143, 3142)∪A(321, 2143, 2413)

2. A(321, 2143, 3142) = S−1
2

3. A(321, 2143, 3142)−1 = A(321, 2143, 2413) = S2

4. |An(321, 2143, 3142)| = 2n − n

5. |An(321, 2143)| = 2n+1 − 2n− 1−
(
n+1

3

)
Proof For part 1 we can confirm, by case checking, that any permutation τ
which involves 3142 and 2413 necessarily involves 321 or 2143; only a finite
number of cases have to be checked since we may presume that τ is a minimal
permutation involving 3142 and 2413 (and so of length at most 8). This implies
that a permutation which avoids 321 and 2143 must avoid at least one of 3142
and 2413.

For part 2 it is easy to see that the right-hand side set is contained in the
left-hand side set. Now let σ ∈ A(321, 2143, 3142) and write

σ = [1, 2, . . . ,m, a1, a2, . . . , ar,m + 1, b1, . . . , bs]

where m ≥ 0 and r ≥ 1. Since every ai > m + 1 and σ avoids 321 a1 < a2 <
. . . < ar. Moreover b1, . . . , bs must also be increasing since, if bi > bi+1 then the
subsequence [a1,m+1, bi, bi+1] is either order isomorphic to 4132 which involves
321 if a1 > bi, or order isomorphic to 3142 if bi > a1 > bi+1, or order isomorphic
to 2143 if bi+1 > ai. Thus, σ = γδ where γ, δ are increasing and so σ ∈ S−1

2 .
Part 3 is true because the permutation inverse of 3142 is 2413.
For part 4 a permutation σ = γδ (with γ, δ increasing) of An(321, 2143, 3142)

is defined once the subset of values in γ is determined. However, although there
are 2n such subsets, n + 1 of them (those of the form {1, 2, . . . , i}) all give the
same permutation σ and so there are 2n − n such permutations.

Finally, to prove part 5 we use

|An(321, 2143, 3142) ∪ An(321, 2143, 2413)| =
|An(321, 2143, 3142)|+ |An(321, 2143, 2413)| −
|An(321, 2143, 3142) ∩ An(321, 2143, 2413)|

12



However, by Theorem 2.7, A(321, 2143, 3142) ∩ A(321, 2143, 2413) = S2 ∩ S−1
2

and so, by Lemma 2.8, this means that

|An(321, 2143, 3142) ∩ An(321, 2143, 2413)| =
(

n + 1
3

)
+ 1

The result now follows using part 4. �

The next proposition sees the first application of a useful fact about permu-
tations avoiding 132. Such a permutation may be written as γnδ, where n is the
largest symbol. Since, for every c ∈ γ and d ∈ δ, cnd is not order isomorphic to
132 we have c > d; in other words γ > δ.

PROPOSITION 3.7 If α = 132 and β = 4312 then |An(α, β)| = (n −
1)2n−2 + 1

Proof Let σ = γnδ ∈ An(α, β) with i = |γ|, j = |δ| and i + j = n − 1.
Since 132 6� σ, we have γ > δ. Also δ avoids 312 (since 4312 � σ). We
consider two cases. Suppose first that δ is not decreasing (and so j ≥ 2). Then,
since 4312 6� σ, γ must be increasing and so all of the 2j−1 − 1 non-decreasing
permutations of Aj(132, 312) (see [10], Proposition 10) are possibilities for δ.
This gives

n−1∑
j=2

(
2j−1 − 1

)
= 2n−1 − n

possibilities for σ. On the other hand, if δ is decreasing, every one of the
permutations of j + 1, . . . , j + i which avoid both 132 and 4312, of which there
ai, can arise as a possibility for γ. This gives a further

∑n−1
i=0 ai possibilities for

σ. Hence

an =
n−1∑
i=0

ai + 2n−1 − n

By differencing we find an = 2an−1 + 2n−2 − 1 from which the result follows by
induction. �

PROPOSITION 3.8 If α = 132 and β = 4231 then |An(α, β)| = (n −
1)2n−2 + 1

Proof Let σ = γnδ ∈ An(α, β) with i = |γ|, j = |δ| and i + j = n − 1. Since
132 6� σ, we have γ > δ. Also δ avoids 231 (since 4231 � σ). We consider two
cases. If j = 0 then γ can be any permutation of An−1(α, β) of which there are
an−1. If j 6= 0 then, as 4231 6� σ, γ must avoid 312. Conversely, if γ avoids
132 and 312, and δ avoids 312 and 231, then σ will avoid α and β. By [10],
Propositions 10 and 8, there are 2i−1 choices for γ if i ≥ 1 (1 if i = 0) and
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2j−1 choices for δ. For each i = 1, . . . , n− 2 we therefore have 2i−12j−1 = 2n−3

possibilities for σ (2n−2 if i = 0). Hence

an = an−1 + 2n−2 +
n−2∑
i=1

2n−3 = an−1 + n2n−3

from which the result follows by induction. �

PROPOSITION 3.9 If α = 132 and β = 3214 the values of an = |An(α, β)|
satisfy the recurrence an = 4an−1 − 5an−2 + 3an−3.

Proof Let σ = γnδ ∈ An(132, 3214), and let j = |δ| with 0 ≤ j < n. Since
132 6� σ, γ > δ. Thus δ is a permutation on 1, 2, . . . , j and so δ ∈ Aj(132, 3214).
Also, because 3214 6� σ, γ is a sequence on j + 1, . . . , n− 1 order isomorphic to
a permutation which involves neither 132 nor 321 and, by [10] Proposition 11,
there are

(
n−1−j

2

)
+ 1 such permutations. Hence

an =
n−1∑
j=0

((
n− 1− j

2

)
+ 1

)
aj

Differencing this recurrence three times gives the required result. �

PROPOSITION 3.10 If α = 123 and β = 3214 the values of an = |An(α, β)|
satisfy the recurrence an = 3an−1 − an−2.

Proof If σ = γnδ ∈ An(α, β) then γ will be decreasing (to avoid 123) and |γ| ≤
2 (to avoid 3214). Let xn, yn, zn be, respectively, the number of possibilities for
σ of the form nδ, anδ, abnδ (with a > b). Thus |An(α, β)| = xn + yn + zn. If
σ = nδ, δ can be any permutation in An−1(α, β) and so

xn = xn−1 + yn−1 + zn−1

If σ = anδ, again aδ can be any permutation in An−1(α, β) and so

yn = xn−1 + yn−1 + zn−1

If σ = abnδ then abδ ∈ An−1(α, β) but b 6= n− 1 and so

zn = xn−1 + zn−1

Solving these recurrences and using an = xn + yn + zn gives the result. �

PROPOSITION 3.11 If α = 132 and β = 1234 the values of an = |An(α, β)|
satisfy the recurrence an = 3an−1 − an−2.
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Proof It is convenient to consider, instead, the equivalent pair α = 213, β =
1234. If σ = γnδ then γ will be increasing (to avoid 213) with |γ| ≤ 2 (to avoid
1234). Let xn, yn, zn be defined as in the previous Proposition. Then

xn = xn−1 + yn−1 + zn−1

yn = xn−1 + yn−1 + zn−1

zn = yn−1 + zn−1

(the last equation because a = n− 1 is impossible). Again, solving these recur-
rences gives the result. �

PROPOSITION 3.12 If α = 132 and β = 4213 the values of an = |An(α, β)|
satisfy the recurrence an = 3an−1 − an−2.

Proof Let σ = γnδ ∈ An(α, β) and let j = |δ|. Since 132 6� σ we have γ > δ.
Thus δ is a permutation of 1, 2, . . . , j which avoids 132 and 213 and, by [10]
Proposition 8, there are 2j−1 such permutations if j > 0 (and 1 if j = 0). Since
there are an−j−1 choices for γ we have

an =
n−1∑
j=1

2j−1an−j−1 + an−1

Hence

an − 2an−1 =
n−1∑
j=1

2j−1an−j−1 + an−1 − 2
n−2∑
j=1

2j−1an−j−2 − 2an−2

= an−1 − an−2

as required. �

PROPOSITION 3.13 If α = 132 and β = 4123 the values of an = |An(α, β)|
satisfy the recurrence an = 3an−1 − an−2.

Proof The argument follows the same lines as the previous proof. Here δ is a
permutation of 1, 2, . . . , j which avoids 132 and 213 and, by [10] Proposition 7,
there are 2j−1 such permutations if j > 0 (1 if j = 0). �

PROPOSITION 3.14 If α = 132 and β = 3124 the values of an = |An(α, β)|
satisfy the recurrence an = 3an−1 − an−2.
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Proof As in the last two propositions we let σ = γnδ ∈ An(α, β) where γ > δ.
This time however we note that γ avoids 132 and 312 and so, by [10] Proposition
10, there are 2i−1 choices for γ if |γ| = i. So again

an =
n−1∑
i=1

2i−1an−i−1 + an−1

�

PROPOSITION 3.15 If α = 123 and β = 2143 the values of an = |An(α, β)|
satisfy the recurrence an = 3an−1 − an−2.

Proof Let σ = γnδ ∈ An(α, β) with γ = [g1, g2, . . . , gi]. If i = 0 or i = 1 then
σ ∈ An(α, β) if and only if γδ ∈ An−1(α, β) so these cases each contribute an−1

to |An(α, β)|. If i ≥ 2 then [g1, g2, . . . , gi] is decreasing (otherwise 123 � σ) and
gi−1 > d for all d ∈ δ (otherwise [gi−1, gi, n, d] will be order isomorphic to 2143).
Thus

σ = [n− 1, n− 2, . . . , n− i + 1, gi, n, δ]

Such permutations are in one-to-one correspondence with permutations [gi, δ]
in An−i(α, β) and so there are an−i for each i ≥ 2. Consequently

an = 2an−1 +
n−1∑
i=2

an−i

and the result follows by differencing. �

PROPOSITION 3.16 If α = 123 and β = 3142 the values of an = |An(α, β)|
satisfy the recurrence an = 3an−1 − an−2.

Proof Let σ = γnδ ∈ An(α, β) with γ = [g1, . . . , gi]. Then γ is decreasing
(since σ avoids 123) and g1, . . . , gi are consecutive integers (if gi > u > gi+1

then u ∈ δ and [gi, gi+1, n, u] is order isomorphic to 3142).
If i = 0 then σ = γnδ ∈ An(α, β) if and only if δ ∈ An−1(α, β) so this case

accounts for an−1 possibilities for σ. For each i ≥ 1, σ = [g1, . . . , gi, n, δ] ∈
An(α, β) if and only if g1δ avoids α, β. The sequence g1δ has length n − i, its
elements comprise the set {1, 2, . . . , n}\{g1−1, . . . , g1− i+1, n}, and it is order
isomorphic to a permutation θ on {1, 2, . . . , n − i}. Moreover, for given n, i,
every permutation θ on {1, 2, . . . , n − i} determines a unique order isomorphic
sequence g1δ on a set {1, 2, . . . , n}\{g1−1, . . . , g1− i+1, n}. Hence the number
of possibilities for g1δ is |An−i(α, β)|. Therefore

an = an−1 +
n−1∑
i=1

an−i
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as in the previous proposition. �

PROPOSITION 3.17 If α = 132 and β = 2134 the values of an = |An(α, β)|
satisfy the recurrence an = 3an−1 − an−2.

Proof It is convenient to consider, instead, the equivalent pair α = 312, β =
3421. Let σ = γnδ ∈ An(α, β) with δ = [d1d2 . . . , dj ]. Then δ is decreasing
(to avoid 312) and, for all g ∈ γ, g < dj−1 (otherwise [g, n, dj−1, dj ] is order
isomorphic to 3421). Thus σ has either the form γn or the form [γ, n, n −
1, . . . .n−(j−1), dj ]. In the first case, γn ∈ An(α, β) if and only if γ ∈ An−1(α, β)
and so there are an−1 permutations of this type. Permutations of the second
type are in one-to-one correspondence with permutations γdj ∈ An−j(α, β) and
there are an−j of these for each value of j. Hence

an = an−1 +
n−1∑
j=1

an−j

as before. �

PROPOSITION 3.18 If α = 132 and β = 3412 the values of an = |An(α, β)|
satisfy the recurrence an = 3an−1 − an−2.

Proof Let σ = γnδ ∈ An(α, β). Then γ > δ as 132 6� σ. If γ is empty then
δ can be any of the an−1 members of An−1(α, β). If γ is non-empty then, in
order to avoid 3412 � σ, δ must be decreasing. In this case γ avoids both 132
and 3412 and for each i = |γ| there are ai such permutations. This gives

an = an−1 +
n−1∑
i=1

ai

again. �
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